【題目】如圖,AB和DE是直立在地面上的兩根立柱,AB=5 m,某一時(shí)刻AB在陽(yáng)光下的投影BC=2 m.
(1)請(qǐng)你畫(huà)出此時(shí)DE在陽(yáng)光下的投影;
(2)在測(cè)量AB的投影長(zhǎng)時(shí),同時(shí)測(cè)量出DE在陽(yáng)光下的投影長(zhǎng)為5 m,請(qǐng)你計(jì)算DE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)DE=12.5m.
【解析】
(1)根據(jù)平行投影的性質(zhì)可先連接AC,再過(guò)點(diǎn)D作DF∥AC交地面與點(diǎn)F,DF即為所求;
(2)根據(jù)平行的性質(zhì)可知△ABC∽△DEF,利用相似三角形對(duì)應(yīng)邊成比例即可求出DE的長(zhǎng).
解:(1)作法:連接AC,過(guò)點(diǎn)D作DF∥AC,交直線BE于點(diǎn)F,則EF就是DE在陽(yáng)光下的投影.
(2)∵太陽(yáng)光線是平行的,
∴AC∥DF,
∴∠ACB=∠DFE.
又∵∠ABC=∠DEF=90°,
∴△ABC∽△DEF,
∴=.
∵AB=5 m,BC=2 m,EF=5 m,
∴=,
∴DE=12.5(m).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn),,分別為,,的中點(diǎn).現(xiàn)從點(diǎn)觀察線段,當(dāng)長(zhǎng)度為的線段(圖中的黑粗線)以每秒個(gè)單位長(zhǎng)的速度沿線段從左向右運(yùn)動(dòng)時(shí),將阻擋部分觀察視線,在區(qū)域內(nèi)形成盲區(qū).設(shè)的左端點(diǎn)從點(diǎn)開(kāi)始,運(yùn)動(dòng)時(shí)間為秒.設(shè)區(qū)域內(nèi)的盲區(qū)面積為(平方單位).
求與之間的函數(shù)關(guān)系式;
請(qǐng)簡(jiǎn)單概括隨的變化而變化的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱(chēng)之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:
(1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系: ;
(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù): 個(gè);
(3)圖2中,當(dāng)∠D=40°,∠B=30°度時(shí),求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C 是線段 AB 上一點(diǎn),且△ACD 和△BCE 都是等邊三角形,連接 AE、BD 相交于點(diǎn) O,AE、BD 分別交 CD、CE 于 M、N,連接 MN、OC,則下列所給的結(jié)論中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120;⑤OC 平分∠AOB.其中結(jié)論正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫(huà)出和;
把先向右平移個(gè)單位,再向上平移個(gè)單位,得到;
以圖中的為位似中心,將作位似變換且放大到原來(lái)的兩倍,得到;
直接回答________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y1=k(x-1)與一次函數(shù)y2=-k(x-3)的圖像交于點(diǎn)P,其中k≠0.
(1)求點(diǎn)P的橫坐標(biāo).
(2)點(diǎn)A(a,y)和點(diǎn)B(b,y)分別在y1和y2的圖像上,若a=5,求b的值.
(3)點(diǎn)C(x,m)和點(diǎn)D(x,n)分別在y1和y2的圖像上,若m-n>k,當(dāng)k>0時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿著過(guò)AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A1,稱(chēng)為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過(guò)AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱(chēng)為第2次操作,折痕D1E1到BC的距離記為h2:按上述方法不斷操作下去…,經(jīng)過(guò)第2019次操作后得到的折痕D2018E2018,到BC的距離記為h2019:若h1=1,則h2019的值為(____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1是一個(gè)重要公式的幾何解釋?zhuān)?qǐng)你寫(xiě)出這個(gè)公式: ;
(2)如圖2,已知,,且三點(diǎn)共線.
試證明;
(3)勾股定理是幾何學(xué)中的明珠,千百年來(lái),人們對(duì)它的證明趨之若騖,有資料表明,關(guān)于勾股定理的證明方法已有500余種.課本中介紹了比較有代表性的趙爽弦圖.
伽菲爾德(Garfield,1881年任美國(guó)第20屆總統(tǒng))利用圖2證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),請(qǐng)你寫(xiě)出該證明過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com