【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2DAB上的動點,將線段CD繞點C逆時針旋轉90°,得到線段CE,連接BE,則BE的最小值是(

A.-1B.C.D.2

【答案】A

【解析】

過點CCKAB于點K,將線段CK繞點C逆時針旋轉90° 得到CH,連接HE,延長HEAB的延長線于點J;通過證明△CKD≌△CHE (ASA),進而證明所構建的四邊形CKJH是正方形,所以當點E與點J重合時,BE的值最小,再通過在RtCBK中已知的邊角條件,即可求出答案.

如圖,過點CCKAB于點K,將線段CK繞點C逆時針旋轉90° 得到CH,連接HE,延長HEAB的延長線于點J;

∵將線段CD繞點C逆時針旋轉90° ,得到線段CE

∴∠DCE=KCH = 90°

∵∠ECH=KCH - KCE,∠DCK =DCE-KCE

∴∠ECH =DCK

又∵CD= CE,CK = CH

∴在△CKD和△CHE

∴△CKD≌△CHE (ASA)

∴∠CKD=H=90°,CH=CK

∴∠CKJ =KCH =H=90°

∴四邊形CKJH是正方形

CH=HJ=KJ=C'K

∴點E在直線HJ上運動,當點E與點J重合時,BE的值最小

∵∠A= 30°

∴∠ABC=60°

RtCBK中, BC= 2,

CK = BCsin60°=,BK=BCcos60° = 1

KJ = CK =

所以BJ = KJ-BK=;

BE的最小值為.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】日,葫蘆島市九年級師生結束了兩個多月的線上教學和學習,正式回歸校園,在開學第一天,某校教導處老師為了解九年級學生對新冠傳播與防治知識的掌握情況,隨機抽取了部分學生進行了防疫知識的測試,測試后的成績,按得分劃分為四個等級,:優(yōu)秀,:良好,:及格,:不及格,并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)提供的信息,解答以下問題:

1)本次調查抽取的學生人數(shù)有多少人?

2)扇形統(tǒng)計圖中 , 并補全條形統(tǒng)計圖;

3)已知該校九年級有名學生,學校決定對不及格的學生進行一次防疫知識的培訓,那么需要接受培訓的學生大約有多少人?

4)已知優(yōu)秀的同學有名男生和名女生,從中隨機抽取名進行防疫知識的交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】桌面上有四張正面分別標有數(shù)字,,的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗勻.

(1)隨機翻開一張卡片,正面所標數(shù)字大于的概率為

(2)隨機翻開一張卡片,從余下的三張卡片中再翻開一張,求翻開的兩張卡片正面所標數(shù)字之和是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某射擊運動員在訓練中射擊了10次,成績如圖,下列結論正確的是(

A.平均數(shù)是8B.眾數(shù)是8 C.中位數(shù)是9 D.方差是1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學生選一個主題參與.為了解活動開展情況,學校隨機抽取了部分學生進行調查,并根據(jù)調查結果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)本次隨機調查的學生人數(shù)是 人;

2)請你補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;

4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學生選一個主題參與.為了解活動開展情況,學校隨機抽取了部分學生進行調查,并根據(jù)調查結果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)本次隨機調查的學生人數(shù)是 人;

2)請你補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;

4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一居民樓AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α38°.從距離樓底B2米的P處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β28°.已知樹高EF8米,求塔CD的高度.(參考數(shù)據(jù):sin38°≈0.6cos38°≈0.8,tan38°≈0.8sin28°≈0.5,cos28°≈0.9tan28°≈0.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形,且,,為弧上任意一點,過點作于點,設的內心為,連接、.當點從點運動到點時,內心所經(jīng)過的路徑長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在抗擊新型冠狀病毒疫情期間,某校學生主動發(fā)起為武漢加油捐款活動,為了了解學生捐款金額(單位:元),隨機調查了該校的部分學生,根據(jù)調查結果,繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:

(Ⅰ)本次接受調查的學生人數(shù)為_________,圖①中m的值為_________;

(Ⅱ)求統(tǒng)計的這組學生捐款數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計的這組學生捐款數(shù)據(jù)的樣本數(shù)據(jù),若該校共有1800名學生,估計該校此次捐款總金額為多少元?

查看答案和解析>>

同步練習冊答案