【題目】某中學開展了“手機伴我行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成圖①、圖②不完整的統(tǒng)計圖,已知問卷調查中“查資料”的人數(shù)是40人,條形統(tǒng)計圖中“0~1表示每周使用手機的時間大于0小時而小于或等于1小時,以此類推.
(1)本次問卷調查一共調查了多少名學生?
(2)補全條形統(tǒng)計圖;
(3)該校共有學生1200人,估計每周使用手機“玩游戲”是多少名學生?
【答案】(1)100;(2)見解析;(3)420人.
【解析】
(1)由“查資料”的人數(shù)是40人,占被調查人數(shù)為40%可得總人數(shù);
(2)根據(jù)時間段人數(shù)之和等于總人數(shù)求得3小時以上的人數(shù)即可補全圖形;
(3)用總人數(shù)乘以樣本中玩游戲人數(shù)所占百分比可得.
(1)本次問卷調查的學生人數(shù)為40÷40%=100人;
(2)3小時以上的人數(shù)為100﹣(2+16+18+32)=32人,
補全圖形如下:
(3)估計每周使用手機“玩游戲”的學生人數(shù)為1200×(1﹣18%﹣40%﹣7%)=420人.
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產兩種設備,已知每臺種設備的成本是種設備的1.5倍,公司若投入6萬元生產種設備,投人15萬元生產種設備,則可生產兩種設備共40臺.請解答下列問題:
(1)兩種設備每臺的成本分別是多少萬元?
(2)若兩種設備每臺的售價分別是5000元、9000元,公司決定生產兩種設備共50臺,且其中種設備至少生產10臺,計劃銷售后獲利不低于12萬元,請問采用哪種生產方案公司所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結合圖中相關數(shù)據(jù)回答下列問題:
(1)則樣本容量是 ,并補全直方圖;
(2)該年級共有學生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學生中恰有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率.
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:若x2+y2+2x-4y+5=0,求x、y.
解:∵x2+y2+2x-4y+5=0,(x2+2x+1)+(y2-4y+4)=0
∴(x+1)2+(y-2)2=0 ∴(x+1)2=0,(y-2)2=0
∴x=-1,y=2.
根據(jù)你的觀察,探究下面的問題:
已知:如圖,在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,點E是AC邊上的一個動點(點E與點A、C不重合).
(1)當a、b滿足a2+b216a12b+100=0,且c是不等式組的最大整數(shù)解,試求△ABC的三邊長;
(2)在(1)的條件得到滿足的△ABC中,若設AE=m,則當m滿足什么條件時,BE將△ABC的周長分成兩部分的差不小于2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當點P在B、D兩點之間運動時,問∠APC與α、β之間有何數(shù)量關系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球若干個(除顏色外其余都相同),其中紅球2個(分別標有1號、2號),藍球1個.若從中任意摸出一個球,它是藍球的概率為.
(1)求袋中黃球的個數(shù);
(2)第一次任意摸出一個球(不放回),第二次再摸出一個球,請用畫樹狀圖或列表格的方法,求兩次摸到不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級組織有獎知識競賽,派小明去購買A、B兩種品牌的鋼筆作為獎品.已知一支A品牌鋼筆的價格比一支B品牌鋼筆的價格多5元,且買100元A品牌鋼筆與買50元B品牌鋼筆數(shù)目相同.
(1)求A、B兩種品牌鋼筆的單價分別為多少元?
(2)根據(jù)活動的設獎情況,決定購買A、B兩種品牌的鋼筆共100支,如果設購買A品牌鋼筆的數(shù)量為n支,購買這兩種品牌的鋼筆共花費y元.
①直接寫出y(元)關于n(支)的函數(shù)關系式;
②如果所購買A品牌鋼筆的數(shù)量不少于B品牌鋼筆數(shù)量的,請你幫助小明計算如何購買,才能使所花費的錢最少?此時花費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形 ABCD 中,AB=8 cm,BC=12 cm,∠B=60°,G 是CD 的中點,E 是邊 AD 上的動點,EG 的延長線與 BC 的延長線交于點 F, 連接 CE,DF.
(1)求證:四邊形 CEDF 是平行四邊形;
(2)①AE= cm 時,四邊形 CEDF 是矩形,請寫出判定矩形的依據(jù)(一條即可);
②AE= cm 時,四邊形 CEDF 是菱形,請寫出判定菱形的依據(jù)(一條即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經調查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件.求:
(1)若商場每件襯衫降價4元,則商場每天可盈利多少元?
(2)若商場平均每天要盈利1200元,每件襯衫應降價多少元?
(3)要使商場平均每天盈利1600元,可能嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com