【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A.25B.12.5C.5D.10
【答案】B
【解析】
過A作AE⊥AC,交CB的延長線于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四邊形ABCD的面積與△ACE的面積相等,根據(jù)S△ACE=×5×5=12.5,即可得出結(jié)論.
如圖,過A作AE⊥AC,交CB的延長線于E,
∵∠DAB=∠DCB=90°,
∴∠D+∠ABC=180°=∠ABE+∠ABC,
∴∠D=∠ABE,
又∵∠DAB=∠CAE=90°,
∴∠CAD=∠EAB,
又∵AD=AB,
∴△ACD≌△AEB(ASA),
∴AC=AE,即△ACE是等腰直角三角形,
∴四邊形ABCD的面積與△ACE的面積相等,
∵S△ACE=×5×5=12.5,
∴四邊形ABCD的面積為12.5,
故答案為B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=4,AD=3,AB⊥AD ,BC=12.
(1)求BD的長;
(2)當(dāng)CD為何值時,△BDC是以CD為斜邊的直角三角形?
(3)在(2)的條件下,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則下列四個結(jié)論:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中結(jié)論正確的序號為( )
A.①②③B.①②C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分線交AD于E,交AB于F,FG⊥BC于G,請猜測AE與FG之間有怎樣的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=120°,∠B=40°,如果過點A的一條直線l把△ABC分割成兩個等腰三角形,直線l與BC交于點D,那么∠ADC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BDDE于點D, CEDE 于點 E.
(1)若BC在DE的同側(cè)(如圖所示),且AD=CE,求證:
(2)若B、C在的兩側(cè)(如圖所示 ),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b可以取﹣2、﹣1、1、2中任意一個值(a≠b),則直線y=ax+b的圖象不經(jīng)過第四象限的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com