【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。
A. 2 B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.
(1)求拋物線的解析式;
(2)點為第一象限拋物線上一動點.設(shè)點的橫坐標(biāo)為,的面積為.當(dāng)為何值時,的值最大,并求的最大值;
(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,點C在⊙O上,且,聯(lián)結(jié)AO,CO,并延長CO交弦AB于點D,AB=4,CD=6.
(1)求∠OAB的大;
(2)若點E在⊙O上,BE∥AO,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視舉辦的《主持人大賽》受到廣泛的關(guān)注.某中學(xué)學(xué)生會就《主持人大賽》節(jié)目的喜愛程度,在校內(nèi)對部分學(xué)生進行了問卷調(diào)查,并對問卷調(diào)查的結(jié)果分為“非常喜歡”、“比較喜歡”、“感覺一般”、“不太喜歡”四個等級,分別記作、、、.根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次被調(diào)查對象共有 人;扇形統(tǒng)計圖中被調(diào)查者“比較喜歡”等級所對應(yīng)圓心角的度數(shù)為 .
(2)將條形統(tǒng)計圖補充完整,并標(biāo)明數(shù)據(jù);
(3)若選“不太喜歡”的人中有兩個女生和兩個男生,從選“不太喜歡”的人中挑選兩個學(xué)生了解不太喜歡的原因,請用列舉法(畫樹狀圖或列表),求所選取的這兩名學(xué)生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)全等形的定義,我們把四個角分別相等,四條邊分別相等的兩個凸四邊形叫做全等四邊形.
(1)某同學(xué)在探究全等四邊形的判定時,得到如下三個命題,請判斷它們是否正確(直接在橫線上填寫“真”或“假”).
①四條邊成比例的兩個凸四邊形全等;( 命題)
②四個角分別相等的兩個凸四邊形全等;( 命題)
③兩個面積相等的正方形全等;( 命題)
④三角分別相等,且其中兩角夾邊相等兩個凸四邊形全等.( 命題)
(2)如圖,在四邊形ABCD和四邊形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,AB=A1B1,BC=∠B1C1,CD=C1D1.求證:在四邊形ABCD和四邊形A1B1C1D1全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上老師帶領(lǐng)全班學(xué)生測量旗桿高度.如圖垂直于地面的旗桿頂端A垂下一根繩子.小明同學(xué)將繩子拉直釘在地上,繩子末端恰好在點C處且測得旗桿頂端A的仰角為75°;小亮同學(xué)接著拿起繩子末端向前至D處,拉直繩子,此時測得繩子末端E距離地面1.5 m且與旗桿頂端A的仰角為60°根據(jù)兩位同學(xué)的測量數(shù)據(jù),求旗桿AB的高度.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,結(jié)果精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣2(k≠0)與y軸交于點A,與雙曲線y=在第一象限內(nèi)交于點B(3,b),在第三象限內(nèi)交于點C.
(1)求雙曲線的解析式;
(2)直接寫出不等式x﹣2>的解集;
(3)若OD∥AB,在第一象限交雙曲線于點D,連接AD,求S△AOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍(lán)色乒乓球共100個.從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.3.
(1)試求出紙箱中藍(lán)色球的個數(shù);
(2)小明向紙箱中再放進紅色球若干個,小麗為了估計放入的紅球的個數(shù),她將箱子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回箱子中,多次重復(fù)上述過程后,她發(fā)現(xiàn)摸到紅球的頻率在0.5附近波動,請據(jù)此估計小明放入的紅球的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com