【題目】甲、乙兩個袋中均裝有三張除所標數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標有的三個數(shù)值為﹣7,﹣1,3.乙袋中的三張卡片所標的數(shù)值為﹣2,1,6.先從甲袋中隨機取出一張卡片,用x表示取出的卡片上的數(shù)值,再從乙袋中隨機取出一張卡片,用y表示取出卡片上的數(shù)值,把x、y分別作為點A的橫坐標和縱坐標.
(1)用適當?shù)姆椒▽懗鳇cA(x,y)的所有情況.
(2)求點A落在第三象限的概率.
【答案】(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2).
【解析】
列表法或樹狀圖法,平面直角坐標系中各象限點的特征,概率.
(1)直接利用表格或樹狀圖列舉即可解答.
(2)利用(1)中的表格,根據(jù)第三象限點(-,-)的特征求出點A落在第三象限共有兩種情況,再除以點A的所有情況即可.
解:(1)列表如下:
﹣7 | ﹣1 | 3 | |
﹣2 | (﹣7,﹣2) | (﹣1,﹣2) | (3,﹣2) |
1 | (﹣7,1) | (﹣1,1) | (3,1) |
6 | (﹣7,6) | (﹣1,6) | (3,6) |
點A(x,y)共9種情況.
(2)∵點A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)兩種情況,
∴點A落在第三象限的概率是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,夜晚,小華利用路燈A測量建筑物GF的高度,他在點D處豎立了一根木桿CD,測得木桿CD的影長DE=1.5m,AB⊥EG,CD⊥EG,GF⊥EG.
(1)在圖中畫出表示建筑物GF影子的線段GH;
(2)已知木桿的高CD=2m,建筑物GF的影子GH=7.8m,木桿CD與路燈桿AB之間的距離BD=5.85m,路燈桿AB與建筑物GF之間的距離BG=6.9m,請你根據(jù)題中提供的相關(guān)信息,求出建筑物GF的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.
(1)如圖①,若點E在上,F是DE上的一點,DF=BE.求證:△ADF≌△ABE;
(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE﹣BE=AE.請你說明理由;
(3)如圖②,若點E在上.寫出線段DE、BE、AE之間的等量關(guān)系.(不必證明)
第26題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且 ∠ADE=60°,BD=4,CE=,則△ABC的面積 為( 。
A. B. 15 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象經(jīng)過點A(4,b),過點A作AB⊥x軸于點B,△AOB的面積為2.
(1)求k和b的值;
(2)若一次函數(shù)y=ax﹣3的圖象經(jīng)過點A,求這個一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點的橫坐標,縱坐標的對應(yīng)值如下表:
… | … | ||||||
… | … |
根據(jù)上表填空:
①拋物線與軸的交點坐標是________和________;
②拋物線經(jīng)過點,________;
③在對稱軸右側(cè),隨增大而________;
試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設(shè)月利潤為w內(nèi)(元).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納x2元的附加費,設(shè)月利潤為w外(元).
(1)當x=1000時,y= 元/件,w內(nèi)= 元;
(2)分別求出w內(nèi),w外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com