【題目】如圖,在平面直角坐標(biāo)系xoy中,A(﹣3,0),B(0,1),形狀相同的拋物線Cn(n=1,2,3,4,…)的頂點在直線AB上,其對稱軸與x軸的交點的橫坐標(biāo)依次為2,3,5,8,13,…,根據(jù)上述規(guī)律,拋物線C2的頂點坐標(biāo)為_____;拋物線C8的頂點坐標(biāo)為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某紡織廠收購某種特色棉花,若直接轉(zhuǎn)賣這種特色棉花,則每噸可獲得的利潤為500元.若經(jīng)過級加工再轉(zhuǎn)賣,則每噸可獲得的利潤為1000元;若經(jīng)過級加工再轉(zhuǎn)賣,則每噸可獲得的利潤為2000元.已知該紡織廠對棉花進行級加工,每天可加工16噸;進行級加工,每天可加工6噸,且這兩種等級的加工不能同時進行.若該紡織廠收購了140噸這種特色棉花,決定15天內(nèi)加工完,且有如下三種可行方案:
方案一:將所收購的特色棉花直接轉(zhuǎn)賣.
方案二:將盡可能多的特色棉花進行級加工,余下的部分直接轉(zhuǎn)賣.
方案三:一部分進行級加工,另一部分進行級加工,恰好15天完成.
若你是該紡織廠負(fù)責(zé)人,想要獲利最多,你決定使用哪套方案?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員的10次射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖.
并整理分析數(shù)據(jù)如下表:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | 7 | 7 | 1.2 | |
乙 | 7 | 8 |
(1)求,,的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從頂點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…按這樣的運動規(guī)律,經(jīng)過第2010次運動后,動點P的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人同時各接受了600個零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時開始加工,加工過程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務(wù),如圖表示甲比乙多加工的零件數(shù)量(個)與加工時間(分)之間的函數(shù)關(guān)系,觀察圖象解決下列問題:
(1)點B的坐標(biāo)是________,B點表示的實際意義是___________ _____;
(2)求線段BC對應(yīng)的函數(shù)關(guān)系式和D點坐標(biāo);
(3)乙在加工的過程中,多少分鐘時比甲少加工100個零件?
(4)為了使乙能與甲同時完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每分鐘能加工3個零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少分鐘時開始幫助乙?并在圖中用虛線畫出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在春節(jié)期間對顧客實行優(yōu)惠,規(guī)定如下:
(1)王老師一次性購物600元,他實際付款 元.
(2)若顧客在該超市一次性購物x元,當(dāng)x小于500元但不小于200時,他實際付款 元,當(dāng)x大于或等于500元時,他實際付款 元.(用含x的代數(shù)式表示).
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為a元(200<a<300),用含a 的代數(shù)式表示兩次購物王老師實際付款多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連結(jié)它的兩個非直角頂點的線段叫做這個損矩形的直徑。
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段AC,同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點,在公共邊的同側(cè)的兩個角是相等的。如圖1中:△ABC和△ABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC。請再找一對這樣的角來 =
(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由。
(3)在第(2)題的條件下,若此時AB=,BD=,求BC的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com