【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.
下列判斷:
①當(dāng)x>0時,y1>y2;
②當(dāng)x<0時,x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正確的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個點A,B,C,回答下列問題:
(1)若將點B向右移動6個單位后,三個點所表示的數(shù)中最小的數(shù)是多少?
(2)在數(shù)軸上找一點D,使點D到A,C兩點的距離相等,寫出點D表示的數(shù);
(3)在點B左側(cè)找一點E,使點E到點A的距離是到點B的距離的2倍,并寫出點E表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新定義):A、B、C 為數(shù)軸上三點,若點 C 到 A 的距離是點 C 到 B 的距離的 3 倍,我們就稱點
C 是(A,B)的幸運點.
(特例感知):
(1)如圖 1,點 A 表示的數(shù)為﹣1,點 B 表示的數(shù)為 3.表示 2 的點 C 到點 A 的距離是 3, 到點 B 的距離是 1,那么點 C 是(A,B)的幸運點.
①(B,A)的幸運點表示的數(shù)是 ;A.﹣1; B.0; C.1; D.2
②試說明 A 是(C,E)的幸運點.
(2)如圖 2,M、N 為數(shù)軸上兩點,點 M 所表示的數(shù)為﹣2,點 N 所表示的數(shù)為 4,則(M,N)的幸點示的數(shù)為 .
(拓展應(yīng)用):
(3)如圖 3,A、B 為數(shù)軸上兩點,點 A 所表示的數(shù)為﹣20,點 B 所表示的數(shù)為 40.現(xiàn)有一只電子螞蟻 P 從點 B 出發(fā),以 3 個單位每秒的速度向左運動,到達點 A 停止.當(dāng) t 為何值時,P、A 和 B 三個點中恰好有一個點為其余兩點的幸運點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為直線AB上一點,射線OD、OC、OE位于直線AB上方,OD在OE的左側(cè),∠AOC=120°,∠DOE=α.
(1)如圖1,α=70°,當(dāng)OD平分∠AOC時,求∠EOB的度數(shù).
(2)如圖2,若∠DOC=2∠AOD,且α<80°,求∠EOB的度數(shù)(用含α的代數(shù)式表示);
(3)若α=90°,點F在射線OB上,若射線OF繞點O順時針旋轉(zhuǎn)n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC,當(dāng)∠FOH=∠AOC時,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ACB中,∠C=90°,點O在AB上,以O為圓心,OA長為半徑的圓與AC,AB分別交于點D,E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD∶AO=8∶5,BC=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖O為坐標(biāo)原點,四邊形ABCD是菱形,A(4,4),B點在第二象限,AB=5,AB與y軸交于點F,對角線AC交y軸于點E
(1)直接寫出B、C點的坐標(biāo);
(2)動點P從C點出發(fā)以每秒1個單位的速度沿折線段C﹣D﹣A運動,設(shè)運動時間為t秒,請用含t的代數(shù)式表示△EDP的面積;
(3)在(2)的條件下,是否存在一點P,使△APE沿其一邊翻折構(gòu)成的四邊形是菱形?若存在,請直接寫出當(dāng)t為多少秒時存在符合條件的點P;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個長方形操場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.
(1)請列式表示操場空地的面積;
(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 所示,用 20 m 的籬笆(細線部分),兩面靠墻圍成矩形的苗圃.
(1)設(shè)矩形的一邊長為x(m),面積為y(m 2 ),求y關(guān)于x的函數(shù)表達式;
(2)求當(dāng)x取8、9、10、11、12時y的值,并觀察這幾種情況下,哪種情況面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù)上述過程,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.64 | 0.58 | 0.605 | 0.601 |
(1)請將表中的數(shù)據(jù)補充完整,
(2)請估計:當(dāng)n很大時,摸到白球的概率約是 .(精確到0.1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com