【題目】如圖,拋物線y=﹣x2+2x+3交x軸于A,B兩點,交y軸于點C,點D為拋物線的頂點,點C關于拋物線的對稱軸的對稱點為E,點G,F分別在x軸和y軸上,則四邊形EDFG周長的最小值為_____.
【答案】 +
【解析】
根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關于y軸的對稱點D′(-1,4)、作點E關于x軸的對稱點E′(2,-3),從而得四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)兩點間的距離公式可得答案.
解:如圖,
在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴對稱軸為x=1,頂點D(1,4),
則點C關于對稱軸的對稱點E的坐標為(2,3),
作點D關于y軸的對稱點D′(﹣1,4),作點E關于x軸的對稱點E′(2,﹣3),
連接D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,
四邊形EDFG的周長=DE+DF+FG+GE
=DE+D′F+FG+GE′
=DE+D′E′
=.
∴四邊形EDFG的周長的最小值為: +.
故答案是: +.
科目:初中數(shù)學 來源: 題型:
【題目】為了測量重慶有名的觀景點南山大金鷹的大致高度,小南同學使用的無人機進行觀察,當無人機與大金鷹側面在同一平面,且距離水平面垂直高度GF為100米時,小南調整攝像頭方向,當俯角為45°時,恰好可以拍攝到金鷹的頭頂A點;當俯角為63°時,恰好可以拍攝到金鷹底座點E.已知大金鷹是雄踞在一人造石臺上,石臺側面CE長12.5米,坡度為1:0.75,石臺上方BC長10米,頭部A點位于BC中點正上方.則金鷹自身高度約( 。┟祝ńY果保留一位小數(shù),sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市以20元/千克的進貨價購進了一批綠色食品,如果以30元/千克銷售這些綠色食品,那么每天可售出400千克.由銷售經(jīng)驗可知,每天的銷售量y(千克)與銷售單價x(元)(x≥30)存在如圖所示的一次函數(shù)關系.
(1)試求出y與x的函數(shù)關系式;
(2)設該超市銷售該綠色食品每天獲得利潤w元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關于y軸對稱的圖形△A1B1C1,并直接寫出C1點坐標;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點坐標;
(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學復習課上,數(shù)學老師用幾何畫板上畫出二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,四名同學根據(jù)圖象,說出下列結論:李佳:abc<0:王寧:2a﹣b<0:孫浩:b2>4ac一帆:點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2,你認為其中正確的結論有( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,垂足為E,如果AB=5,AE=4,BC=8,有下列結論:
①DE=4;
②S△AED=S四邊形ABCD;
③DE平分∠ADC;
④∠AED=∠ADC.
其中正確結論的序號是_____(把所有正確結論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富校園文化生活,提高學生的綜合素質,促進中學生全面發(fā)展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機抽取一張卡片是足球社團B的概率是 .
(2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與y軸的交點坐標是 ,頂點坐標是 .
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)結合圖象回答:當﹣2<x<2時,函數(shù)值y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com