(2012•武漢)如圖,矩形ABCD中,點(diǎn)E在邊AB上,將矩形ABCD沿直線DE折疊,點(diǎn)A恰好落在邊BC的點(diǎn)F處.若AE=5,BF=3,則CD的長是( 。
分析:先根據(jù)翻折變換的性質(zhì)得出EF=AE=5,在Rt△BEF中利用勾股定理求出BE的長,再根據(jù)AB=AE+BE求出AB的長,再由矩形的性質(zhì)即可得出結(jié)論.
解答:解:∵△DEF由△DEA翻折而成,
∴EF=AE=5,
在Rt△BEF中,
∵EF=5,BF=3,
∴BE=
EF2-BF2
=
52-32
=4,
∴AB=AE+BE=5+4=9,
∵四邊形ABCD是矩形,
∴CD=AB=9.
故選C.
點(diǎn)評(píng):本題考查的是圖形的翻折變換,即折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢)如圖1,點(diǎn)A為拋物線C1:y=
12
x2-2的頂點(diǎn),點(diǎn)B的坐標(biāo)為(1,0)直線AB交拋物線C1于另一點(diǎn)C
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=3交直線AB于點(diǎn)D,交拋物線C1于點(diǎn)E,平行于y軸的直線x=a交直線AB于F,交拋物線C1于G,若FG:DE=4:3,求a的值;
(3)如圖2,將拋物線C1向下平移m(m>0)個(gè)單位得到拋物線C2,且拋物線C2的頂點(diǎn)為點(diǎn)P,交x軸于點(diǎn)M,交射線BC于點(diǎn)N.NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢)如圖,點(diǎn)A在雙曲線y=
k
x
的第一象限的那一支上,AB垂直于y軸于點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE的面積為3,則k的值為
16
3
16
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢)如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED=16米,AE=8米,拋物線的頂點(diǎn)C到ED的距離是11米,以ED所在的直線為x軸,拋物線的對(duì)稱軸為y軸建立平面直角坐標(biāo)系.
(1)求拋物線的解析式;
(2)已知從某時(shí)刻開始的40小時(shí)內(nèi),水面與河底ED的距離h(單位:米)隨時(shí)間t(單位:時(shí))的變化滿足函數(shù)關(guān)系h=-
1128
(t-19)2+8(0≤t≤40),且當(dāng)水面到頂點(diǎn)C的距離不大于5米時(shí),需禁止船只通行,請(qǐng)通過計(jì)算說明:在這一時(shí)段內(nèi),需多少小時(shí)禁止船只通行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢)如圖,CE=CB,CD=CA,∠DCA=∠ECB,求證:DE=AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案