【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y=x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為( 、 ),BK的長是 ,CK的長是 ;
②求點F的坐標;
③請直接寫出拋物線的函數(shù)表達式;
(2)將矩形OCDE沿著經(jīng)過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.
【答案】(1)①10,0,8,10;②(4,8);③y=x2﹣3x+5.(2)不變.S1S2=189.
【解析】試題分析:(1)①根據(jù)四邊形OCKB是矩形以及對稱軸公式即可解決問題.②在RT△BKF中利用勾股定理即可解決問題.③設(shè)OA=AF=x,在RT△ACF中,AC=8﹣x,AF=x,CF=4,利用勾股定理即可解決問題.
(2)不變.S1S2=189.由△GHN∽△MHG,得,得到GH2=HNHM,求出GH2,根據(jù)S1S2=OGHNOGHM即可解決問題.
試題解析:(1)如圖1中,①∵拋物線y=x2﹣3x+m的對稱軸x=﹣=10,
∴點B坐標(10,0),
∵四邊形OBKC是矩形,
∴CK=OB=10,KB=OC=8,
故答案分別為10,0,8,10.
②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,
∴FK==6,
∴CF=CK﹣FK=4,
∴點F坐標(4,8).
③設(shè)OA=AF=x,
在RT△ACF中,∵AC2+CF2=AF2,
∴(8﹣x)2+42=x2,
∴x=5,
∴點A坐標(0,5),代入拋物線y=x2﹣3x+m得m=5,
∴拋物線為y=x2﹣3x+5.
(2)不變.S1S2=189.
理由:如圖2中,在RT△EDG中,∵GE=EO=17,ED=8,
∴DG==15,
∴CG=CD﹣DG=2,
∴OG==2,
∵CP⊥OM,MH⊥OG,
∴∠NPN=∠NHG=90°,
∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,
∴∠HGN=∠NMP,
∵∠NMP=∠HMG,∠GHN=∠GHM,
∴△GHN∽△MHG,
∴,
∴GH2=HNHM,
∵GH=OH=,
∴HNHM=17,
∵S1S2=OGHNOGHM=(2)217=289.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場服裝部為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計的這組數(shù)據(jù),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題.
(1)該商場服裝部營業(yè)員的人數(shù)為 ,圖①中m的值為 .
(2)求統(tǒng)計的這組銷售額額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗購買學(xué)習(xí)用品的收據(jù)如表,因污損導(dǎo)致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題:
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?
商品名 | 單價(元) | 數(shù)量(個) | 金額(元) |
簽字筆 | 3 | 2 | 6 |
自動鉛筆 | 1.5 | ● | ● |
記號筆 | 4 | ● | ● |
軟皮筆記本 | ● | 2 | 9 |
圓規(guī) | 3.5 | 1 | ● |
合計 | 8 | 28 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡:2[(m-1)m+m(m+1)]·[(m-1)m-m(m+1)].若m是任意整數(shù),請觀察化簡后的結(jié)果,你發(fā)現(xiàn)原式表示一個什么數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,其他條件不變,求∠MON的度數(shù);
(3)如果(1)中∠BOC=β(β為銳角),其他條件不變,求∠MON的度數(shù);
(4)從(1)(2)(3)的結(jié)果中你能看出什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,過點D作DE⊥AB于點E,點F 在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在函數(shù)y=kx(k>0)的圖象上有三點A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,則下列各式中正確的是( )
A. y1<0<y3 B. y3<0<y1 C. y2<y1<y3 D. y3<y1<y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com