【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠D=60°且AB=6,過O點(diǎn)作OE⊥AC,垂足為E.
(1)求OE的長(zhǎng);
(2)若OE的延長(zhǎng)線交⊙O于點(diǎn)F,求弦AF、AC和弧CF圍成的圖形(陰影部分)的面積S.
【答案】
(1)解:∵∠D=60°,
∴∠B=60°(圓周角定理),
又∵AB=6,
∴BC=3,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OE⊥AC,
∴OE∥BC,
又∵點(diǎn)O是AB中點(diǎn),
∴OE是△ABC的中位線,
∴OE= BC=
(2)解:連接OC,
則易得△COE≌△AFE,
故陰影部分的面積=扇形FOC的面積,
S扇形FOC= = π.
即可得陰影部分的面積為 π
【解析】(1)根據(jù)∠D=60°,可得出∠B=60°,繼而求出BC,判斷出OE是△ABC的中位線,就可得出OE的長(zhǎng);(2)連接OC,將陰影部分的面積轉(zhuǎn)化為扇形FOC的面積.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解含30度角的直角三角形(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在BC邊上,且AE⊥BC于點(diǎn)E,DE平分∠CDA.若BE∶EC=1∶2,則∠BCD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明,小紅等同學(xué)隨父母一同去某景點(diǎn)旅游,在購(gòu)買門票時(shí),小明和小紅有圖1所示的對(duì)話,根據(jù)圖2的門票票價(jià)和圖1所示的對(duì)話內(nèi)容完成下列問題.
(1)他們一共去了幾個(gè)成人幾個(gè)學(xué)生?
(2)請(qǐng)你幫他們算一算,用哪種方式買票更省錢,省多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運(yùn)算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代數(shù)式x+y+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界讀書日,新華書店矩形購(gòu)書優(yōu)惠活動(dòng):①一次性購(gòu)書不超過100元,不享受打折優(yōu)惠;②一次性購(gòu)書超過100元但不超過200元一律八折;③一次性購(gòu)書200元以上一律打六折.小麗在這次活動(dòng)中,兩次購(gòu)書總共付款190.4元,第二次購(gòu)書原價(jià)是第一次購(gòu)書原價(jià)的3倍,那么小麗這兩次購(gòu)書原價(jià)的總和是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為4,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行,若乙的速度是甲的速度的3倍,則它們第2017次相遇在邊( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連結(jié)DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a,
∵S四邊形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四邊形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E為AD上一點(diǎn),FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長(zhǎng)為_________(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面文字,然后按要求解題.
例:1+2+3+…+100=?如果一個(gè)一個(gè)順次相加顯然太繁,我們仔細(xì)分析這100個(gè)連續(xù)自然數(shù)的規(guī)律和特點(diǎn),可以發(fā)現(xiàn)運(yùn)用加法的運(yùn)算律,是可以大大簡(jiǎn)化計(jì)算,提高計(jì)算速度的.
因?yàn)?/span>1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果.
解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)==5050.
(1)補(bǔ)全例題解題過程;
(2)計(jì)算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com