【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長(zhǎng)CD=6m,坡角到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)
【答案】解:過(guò)D點(diǎn)作DF⊥AB,交AB于點(diǎn)F.
在Rt△ECD中,CD=6,∠ECD=30°,
∴DE=3=FB,EC=3 .
∴DF=EC+CB=8+3 .
在Rt△ADF中,tan∠ADF= ,
∴AF=DF×tan54°.
∴AF=(8+3 )×1.38.
∴AF≈18.20.
∴AB=AF+FB=18.20+3=21.20≈21.2.
∴樓房AB的高度約是21.2m.
【解析】過(guò)D點(diǎn)作DF⊥AB,交AB于點(diǎn)F.首先在直角三角形ECD求得線段DF的長(zhǎng),然后在Rt△ADF中求得AF的長(zhǎng),然后求AB的長(zhǎng)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為25和17,則△EDF的面積為( )
A. 4 B. 5 C. 5.5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮家與姥姥家相距24千米,小亮8:00從家出發(fā),騎自行車(chē)去姥姥家,媽媽8:30從家出發(fā),乘車(chē)沿相同路線去姥姥家.小亮和媽媽的行進(jìn)路程(千米)與時(shí)間(時(shí))的圖象如圖所示.根據(jù)圖象得到下列結(jié)論,其中錯(cuò)誤的是( )
A. 小亮騎自行車(chē)的平均速度是12千米/時(shí)
B. 媽媽比小亮提前0.5小時(shí)到達(dá)姥姥家
C. 媽媽在距家12千米處追上小亮
D. 9:30媽媽追上小亮
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是射線BE上一點(diǎn),過(guò)A作AC⊥BF,垂足為C,CD⊥BE,垂足為D.給出下列結(jié)論:①∠1是∠ACD的余角;②圖中互余的角共有3對(duì);③∠1的補(bǔ)角只有∠DCF;④與∠ADC互補(bǔ)的角共有3個(gè).其中正確結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問(wèn):OB是∠DOF的平分線嗎?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如:如圖①,若點(diǎn)A,B在數(shù)軸上分別對(duì)應(yīng)的數(shù)為a,b(a<b),則AB的長(zhǎng)度可以表示為AB=b-a.
請(qǐng)你用以上知識(shí)解決問(wèn)題:
如圖②,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向左移動(dòng)2個(gè)單位長(zhǎng)度到達(dá)A點(diǎn),再向右移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)B點(diǎn),然后向右移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)C點(diǎn).
(1)請(qǐng)你在圖②的數(shù)軸上表示出A,B,C三點(diǎn)的位置.
(2)若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左移動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
①當(dāng)t=2時(shí),求AB和AC的長(zhǎng)度;
②試探究:在移動(dòng)過(guò)程中,3AC-4AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC與BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個(gè)作為條件,“四邊形ABCD是平行四邊形”為結(jié)論構(gòu)成命題。
(1)以①②作為條件構(gòu)成的命題是真命題嗎?若是,請(qǐng)證明;若不是,請(qǐng)舉出反例;
(2)寫(xiě)出按題意構(gòu)成的所有命題中的假命題,并舉出反例加以說(shuō)明.(命題請(qǐng)寫(xiě)成“如果…,那么….”的形式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD平移后得到四邊形A′B′C′D′
觀察圖形后完成下列問(wèn)題:
(1)四邊形ABCD先向 平移 個(gè)格,再向 平移 個(gè)格后得到四邊形A′B′C′D′.
(2)圖中有哪些相等的線段?有哪些平行的線段?
(3)S四邊形ABCD和S四邊形A′B′C′D′有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開(kāi)挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來(lái)完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:
租金(單位:元/臺(tái)時(shí)) | 挖掘土石方量(單位:m3/臺(tái)時(shí)) | |
甲型挖掘機(jī) | 100 | 60 |
乙型挖掘機(jī) | 120 | 80 |
(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過(guò)850元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com