【題目】如圖,己知,

(1)判斷的位置關(guān)系,并說(shuō)明理由;

(2)平分,于點(diǎn),,求的度數(shù).

【答案】1ACEF,理由見(jiàn)解析;(2)∠BAD=50°

【解析】

1)結(jié)論:ACEF.先證明∠CAD=ACE,再根據(jù)同旁?xún)?nèi)角互補(bǔ)兩直線(xiàn)平行即可證明;

2)先根據(jù)角平分線(xiàn)的定義求出∠ACD=ACE=40°,進(jìn)而可求出∠CAD的值,再證明∠BAC=AFE=90°即可解決問(wèn)題.

解:(1)結(jié)論:ACEF

理由:∵

AD//CE,

∴∠CAD=ACE,

,

ACEF;

2)∵平分,

∴∠ACD=ACE=40°,

∵∠CAD=ACE,

∴∠CAD=40°,

ADEC,AEEC,

∴∠BAC=AFE=90°,

∴∠BAD=90°-40°=50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△AFD為等腰直角三角形,∠FAD=∠BAC90°,點(diǎn)DBC上,則:

1)求證:BFDC

2)若BDAC,則求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是ABC的三邊長(zhǎng),且滿(mǎn)足2a4+2b4+c4=2a2c2+2b2c2,ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

【答案】B

【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,4a4-4a2c2+c4+4b4-4b2c2+c4=0

2a2-c22+2b2-c22=0,2a2-c2=0,2b2-c2=0,

c=2a,c=2b,

a=b,且a2+b2=c2,

∴△ABC為等腰直角三角形.

故選B.

型】單選題
結(jié)束】
11

【題目】將圖1中陰影部分的小長(zhǎng)方形變換到圖2的位置,你能根據(jù)兩個(gè)圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AC=BC,點(diǎn)D、EF分別是線(xiàn)段AC、BCAD的中點(diǎn),BFED的延長(zhǎng)線(xiàn)交于點(diǎn)G,連接GC

1)求證:AB=GD

2)當(dāng)CG=EG時(shí),且AB=2,求CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A(yíng)、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱(chēng)軸為直線(xiàn)x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為﹣
其中正確的結(jié)論個(gè)數(shù)有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線(xiàn)BE交AD于點(diǎn)E,∠CDB的平分線(xiàn)DF交BC于點(diǎn)F,連接BD.

(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,cm ,cm,過(guò)點(diǎn)作射線(xiàn).點(diǎn)從點(diǎn)出發(fā),以3 cm/s的速度沿勻速移動(dòng);點(diǎn)從點(diǎn)出發(fā),以cm/s的速度沿勻速移動(dòng).點(diǎn)、同時(shí)出發(fā),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)、同時(shí)停止移動(dòng).連接,設(shè)移動(dòng)時(shí)間為(s)

(1)點(diǎn)從移動(dòng)開(kāi)始到停止,所用時(shí)間為 s

(2)當(dāng)全等時(shí),

若點(diǎn)、的移動(dòng)速度相同,求的值;

若點(diǎn)的移動(dòng)速度不同,求的值;

(3)如圖,當(dāng)點(diǎn)、開(kāi)始移動(dòng)時(shí),點(diǎn)同時(shí)從點(diǎn)出發(fā),以2 cm/s的速度沿向點(diǎn)勻速移動(dòng),到達(dá)點(diǎn)后立刻以原速度沿返回.當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)、、同時(shí)停止移動(dòng).在移動(dòng)的過(guò)程中,是否存在全等的情形?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,擊打臺(tái)球時(shí)小球反彈前后的運(yùn)動(dòng)路線(xiàn)遵循對(duì)稱(chēng)原理,即小球反彈前后的運(yùn)動(dòng)路線(xiàn)與臺(tái)球案邊緣的夾角相等(α=β),在一次擊打臺(tái)球時(shí),把位于點(diǎn)P處的小球沿所示方向擊出,小球經(jīng)過(guò)5次反彈后正好回到點(diǎn)P,若臺(tái)球案的邊AD的長(zhǎng)度為4,則小球從P點(diǎn)被擊出到回到點(diǎn)P,運(yùn)動(dòng)的總路程為( )

A.16
B.16
C.20
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市南縣大力發(fā)展農(nóng)村旅游事業(yè),全力打造洞庭之心濕地公園,其中羅文村的花海、涂鴉、美食特色游享譽(yù)三湘,游人如織.去年村民羅南洲抓住機(jī)遇,返鄉(xiāng)創(chuàng)業(yè),投入20萬(wàn)元?jiǎng)?chuàng)辦農(nóng)家樂(lè)(餐飲+住宿),一年時(shí)間就收回投資的80%,其中餐飲利潤(rùn)是住宿利潤(rùn)的2倍還多1萬(wàn)元.

(1)求去年該農(nóng)家樂(lè)餐飲和住宿的利潤(rùn)各為多少萬(wàn)元?

(2)今年羅南洲把去年的餐飲利潤(rùn)全部用于繼續(xù)投資,增設(shè)了土特產(chǎn)的實(shí)體店銷(xiāo)售和網(wǎng)上銷(xiāo)售項(xiàng)目.他在接受記者采訪(fǎng)時(shí)說(shuō):我預(yù)計(jì)今年餐飲和住宿的利潤(rùn)比去年會(huì)有10%的增長(zhǎng),加上土特產(chǎn)銷(xiāo)售的利潤(rùn),到年底除收回所有投資外,還將獲得不少于10萬(wàn)元的純利潤(rùn).請(qǐng)問(wèn)今年土特產(chǎn)銷(xiāo)售至少有多少萬(wàn)元的利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案