【題目】如圖,四邊形,、分別平分四邊形的外角,設(shè),.

1)如圖1,若,求的度數(shù);

2)如圖1,若相交于點(diǎn),,請(qǐng)寫(xiě)出、所滿足的等量關(guān)系式;

3)如圖2,若,判斷、的位置關(guān)系,并說(shuō)明理由.

【答案】1120°;(2;(3)平行,理由見(jiàn)解析

【解析】

1)根據(jù)四邊形的內(nèi)角和可求出∠ABC+ADC的度數(shù),利用平角的定義即可得答案;(2)連接BD,根據(jù)角平分線的定義可得∠CBG+CDG=),在△BCD和△BGD中,利用三角形內(nèi)角和定理即可得答案;(3)延長(zhǎng),根據(jù)角平分線的定義可得∠CBE+CDH=),根據(jù)外角性質(zhì)可得,即可得出,根據(jù)可得,根據(jù)平行線的判定定理即可得BE//DF.

1)∵四邊形ABCD的內(nèi)角和為(4-2)×180°=360°,

,

.

2

理由:如圖1,連接,

由(1)得,

分別平分四邊形的外角,

,,

,

中,,

中,

,

,

,

.

3)平行,理由如下:

如圖2,延長(zhǎng),

由(1)得

、分別平分四邊形的外角

,,

,

,

,

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在第一個(gè)ABA中,∠B=20°,AB=AB,在AB上取一點(diǎn)C,延長(zhǎng)AAA,使得AA=AC,得到第二個(gè)AAC;在AC上取一點(diǎn)D,延長(zhǎng)AAA,使得AA=AD;,按此做法進(jìn)行下去,則第5個(gè)三角形中,以點(diǎn)A4為頂點(diǎn)的底角的度數(shù)為(

A.B.10°C.170°D.175°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店兩次購(gòu)進(jìn)一批同型號(hào)的熱水壺和保溫杯,第一次購(gòu)進(jìn) 12 個(gè)熱水壺和 15 個(gè)保溫杯,共用去資金 2850 元,第二次購(gòu)進(jìn) 20 個(gè)熱水壺和 30 個(gè)保溫杯,用去資金 4900元(購(gòu)買同一商品的價(jià)格不變)

1)求每個(gè)熱水壺和保溫杯的采購(gòu)單價(jià)各是多少元?

2)若商場(chǎng)計(jì)劃再購(gòu)進(jìn)同種型號(hào)的熱水壺和保溫杯共 80 個(gè),求所需購(gòu)貨資金 w(元) ,購(gòu)買熱水壺的數(shù)量 m(個(gè))的函數(shù)表達(dá)式.

3)在(2)的基礎(chǔ)上,若準(zhǔn)備購(gòu)買保溫杯的數(shù)量是熱水壺?cái)?shù)量的 3 倍,則該商店需要準(zhǔn)備多少元的購(gòu)貨資金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABE中,BAE=105°,AE的垂直平分線MNBE于點(diǎn)C,且ABCE,則B的度數(shù)是(  )

A. 45°B. 60°C. 50°D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà),使,的對(duì)邊只能在長(zhǎng)度分別為、、的四條線段中任選,可畫(huà)出不同形狀的三角形的個(gè)數(shù)是( )(提示:在直角三角形中,如果一個(gè)銳角等于,那么它所對(duì)的直角邊是斜邊的一半)

A.2個(gè)B.3個(gè)C.4個(gè)D.6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,∠B=90°AB=BC,ADBC邊上的中線,EFAD的垂直平分線,交AB于點(diǎn)E,交AC于點(diǎn)F,則AEBE的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,∠ACB=90°,M是邊AB的中點(diǎn),連接CM并延長(zhǎng)到點(diǎn)E,使得EM=AB,D 是邊AC上一點(diǎn),且AD=BC,連接DE.則∠CDE的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的邊OC=2,將過(guò)點(diǎn)B的直線y=x﹣3x軸交于點(diǎn)E.

(1)求點(diǎn)B的坐標(biāo);

(2)連結(jié)CE,求線段CE的長(zhǎng);

(3)若點(diǎn)P在線段CB上且OP=,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.

(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);

(2)若OEF的面積為9,求反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案