【題目】已知四邊形ABCD中,AB=BC∠ABC=120°,∠MBN=60°∠MBNB點旋轉,它的兩邊分別交ADDC(或它們的延長線)于E,F

∠MBNB點旋轉到AE=CF時(如圖1),易證AE+CF=EF

∠MBNB點旋轉到AE≠CF時,在圖2和圖3這兩種情況下,上述結論是否成立?若成立,請給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明.

【答案】證明見解析.

【解析】試題分析:對于圖乙將△BAE繞點B順時針旋轉120°到△BCE′,易知∠EBE′=120°,F(xiàn),C,E′三點共線,可證△BEF≌△BE′F,可得AE+CF=E′C+CF=E′F=EF.對于圖丙,類似可以得到AE-CF=EF.

試題解析:△BAE繞點B順時針旋轉120°到△BCE′,∠EBE′=120°,F,C,E′三點共線,BE′= BF,∠ABC=120°,∠MBN=60°,∠ABE+∠CBF=120°,∠E′BC+∠CBF=120°所以△BEF≌△BE′F,AE+CF=E′C+CF=E′F=EF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,ECD中點,連結OE.過點CCFBD交線段OE的延長線于點F,連結DF.求證:

(1)ODE≌△FCE;

(2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點,且CE=DF,AE,BF相交于點O,下列結論①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF中,錯誤的有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示為一張長為m,寬為nm<n)的小長方形紙片,現(xiàn)將8張該紙片按如圖2所示的方式無縫隙不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設左上角與右下角的陰影部分面積差為S,當BC長度變化時,按照同樣的方式放置,S卻始終保持不變,則此時=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點R在DE上,且DR:RE=5:4,BR分別與AC,CD相交于點P,Q,則BP:PQ:QR=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)2(y6)2-(y4)3; (2)(ab2c)2÷(ab3c2);

(3)(-x-y)(x-y)+(x+y)2 (4)利用公式計算803×797;

(5)計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

下面是一個有關平行四邊形和等邊三角形的小實驗,請根據(jù)實驗解答問題:

已知在ABCD中,∠ABC120°,點D又是等邊三角形DEF的一個頂點,DEAB相交于點M,DFBC相交于點N(不包括線段的端點)

(1)初步嘗試:

如圖①,若ABBC,求證:BDBMBN;

(2)探究發(fā)現(xiàn):

如圖②,若BC2AB,過點DDHBC于點H,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象經(jīng)過A(2,1)B(1,3)兩點,并且交x軸于點C,交y軸于點D.

1)求該一次函數(shù)的解析式;

2)求點C和點D的坐標;

3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在﹣1,0,1,2,3這五個數(shù)中任取兩數(shù)m,n,則二次函數(shù)y=﹣(x+m)2﹣n的頂點在x軸上的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案