【題目】如圖,在△ABC中,BE、CE 分別是∠ABC 和∠ACB 的平分線,過點 E 作 DF∥BC,交 AB 于 D,交 AC 于 F,若 AB=5,AC=4,則△ADF周長為________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點P為四邊形ABCD內(nèi)一點,且滿足∠APB+∠CPD=180°, 則稱點P為四邊形ABCD的一個“互補點”.
(1)如圖1,點P為四邊形ABCD的一個“互補點”,∠APD=63°,求∠BPC的度數(shù).
(2)如圖2,點P是菱形ABCD對角線上的任意一點.求證:點P為菱形ABCD的一個“互補點”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建設(shè)銀行的某儲蓄員小張在辦理業(yè)務(wù)時,約定存入為正,取出為負(fù). 2019年10月29日,他先后辦理了七筆業(yè)務(wù): +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.
(1)若他早上領(lǐng)取備用金4000元,那么下班時應(yīng)交回銀行_________元錢.
(2)請判斷在這七次辦理業(yè)務(wù)中,小張在第_______次業(yè)務(wù)辦理后手中現(xiàn)金最多,第_________次業(yè)務(wù)辦理后手中現(xiàn)金最少.
(3)若每辦一件業(yè)務(wù),銀行發(fā)給業(yè)務(wù)量的0.2%作為獎勵,小張這天應(yīng)得獎金多少元?
(4)若記小張第一次辦理業(yè)務(wù)前的現(xiàn)金為0點,用折線統(tǒng)計圖表示這7次業(yè)務(wù)辦理中小張手中現(xiàn)金的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某博物館的票價是:成人票元,學(xué)生票元,滿人可以購買團(tuán)體票(不足人可按人計算,票價打折),某班在位老師帶領(lǐng)下去博物館,學(xué)生人數(shù)為人.
如果學(xué)生人數(shù)大于人,該班買票至少應(yīng)付 元.(用含 的代數(shù)式表示)
如果學(xué)生人數(shù)小于人,該班買票至少應(yīng)付 元.(用含的代數(shù)式表示)
如果學(xué)生人數(shù)為人,該班買票至少應(yīng)付多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下列證明過程補充完整.已知:如圖,B、C、E三點在同一直線上,A、F、E三點在同一直線上,∠1=∠2=∠E,∠3=∠4.求證:AB∥CD.
證明:∵∠2=∠E(已知)
∴ ∥BC( )
∴∠3=∠ ( )
∵∠3=∠4(已知)
∴∠4=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ,即∠BAF=∠
∴∠4=∠ (等量代換)
∴ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列結(jié)論:①若,則互為相反數(shù);②若,則且;③;④絕對值小于10的所有整數(shù)之和等于0;⑤3與-5是同類項.其中正確的結(jié)論有( )個.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個三角形,有兩邊相等且其中一組等邊所對的角對應(yīng)相等,但不是全等三角形,我們就稱這兩個三角形為偏差三角形.
(1)如圖1,已知A(3,2),B(4,0),請在x軸上找一個C,使得△OAB與△OAC是偏差三角形.你找到的C點的坐標(biāo)是______,直接寫出∠OBA和∠OCA的數(shù)量關(guān)系______.
(2)如圖2,在四邊形ABCD中,AC平分∠BAD,∠D+∠B=180°,問△ABC與△ACD是偏差三角形嗎?請說明理由.
(3)如圖3,在四邊形ABCD中,AB=DC,AC與BD交于點P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且點C到直線BD的距離是3,求△ABC與△BCD的面積之和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com