【題目】某大型企業(yè)為了保護環(huán)境,準備購買、兩種型號的污水處理設備共10臺,用于同時治理不同成分的污水,若購買6臺,4臺需112萬,購買4臺,6臺則需108萬元.

1)求出型、型污水處理設備的單價;

2)經(jīng)了解,一臺型設備每月可處理污水220噸,一臺型設備每月可處理污水190噸,如果該企業(yè)計劃用不超過106萬元的資金購買這兩種設備,而且使這兩種設備每月的污水處理量不低于2005噸,請通過計算說明這種方案是否可行.

【答案】1型、型污水處理設備的單價分別為12萬元、10萬元;(2)見解析,該企業(yè)計劃投入不超過106萬購買這兩種設備不可行.

【解析】

(1)根據(jù)題意可以列出相應的方程組,從而可以解答本題;
(2)根據(jù)題意可以列出相應的不等式,從而可以解答本題.

解:(1)設型、型污水處理設備的單價分別為萬元、萬元

解得

答:型、型污水處理設備的單價分別為12萬元、10萬元;

2)該企業(yè)投入106萬購買這兩種設備不可行

理由:設購買型污水處理設備臺,

解得

該不等式組無解

∴該企業(yè)計劃投入不超過106萬購買這兩種設備不可行.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【背景】已知:lmnk,平行線lm、mn、nk之間的距離分別為d1d2,d3,且d1d3=1,d2=2.我們把四個頂點分別在l,mn,k這四條平行線上的四邊形稱為“格線四邊形” .

【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BEl于點E,BE的反向延長線交直線k于點F.求正方形ABCD的邊長.

【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AEk于點E,∠AFD=90°,直線DF分別交直線l,k于點G、點M.求證:ECDF

【拓展】(3)如圖3,lk,等邊△ABC的頂點A,B分別落在直線lk上,ABk于點B,且∠ACD=90°,直線CD分別交直線l、k于點G、點M,點D、點E分別是線段GM、BM上的動點,且始終保持ADAE,DHl于點H.猜想:DH在什么范圍內(nèi),BCDE?并說明此時BCDE的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O為坐標原點,A(3a,2a)在第一象限,過點Ax軸作垂線,垂足為點B,連接OA,SAOB=12,點MO出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設點M的運動時間為t秒,連接AM,AN,MN.

(1)a的值;

(2)0<t<2時,

①請?zhí)骄俊?/span>ANM,∠OMN,∠BAN之間的數(shù)量關系,并說明理由;

②試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由。

(3)OM=ON時,請求出t的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。

1)求文具袋和圓規(guī)的單價。

2)學校準備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:

方案一:購買一個文具袋還送1個圓規(guī)。

方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.

①設購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.

②若學校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E,F(xiàn)分別在BC,AB上,點M在BA的延長線上,且CE=BF=AM,過點M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.

(1)求證:DE⊥DM;

(2)猜想并寫出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,DE垂直平分AB ,分別交AB、BC于點D 、E,MN垂直平分AC,分別交AC、BC于點M、N,連接AE,AN.

(1)如圖1,若∠BAC= 100°,求∠EAN的度數(shù);

(2)如圖2,若∠BAC=70°,求∠EAN的度數(shù);

(3)若∠BAC=a(a≠90°),請直接寫出∠EAN的度數(shù). (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在¨ABCD中,過點DDE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF

1)求證:四邊形BFDE是矩形;

2)若CF=3,BF=4DF=5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中, AB8cm,BC12cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設點P的運動時間為t秒.

1)如圖1,SDCP .(用t的代數(shù)式表示)

2)如圖1,當t3時,試說明:△ABP≌△DCP

3)如圖2,當點P從點B開始運動的同時,點Q從點C出發(fā),以v cm/秒的速度沿CD向點D運動,是否存在這樣v的值,使得△ABP與△PQC全等?若存在,請求出v的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績進行統(tǒng)計,并按照成績從低到高分成A,B,C,D,E五個小組,繪制統(tǒng)計圖如下(未完成),解答下列問題:

1)樣本容量為  ,頻數(shù)分布直方圖中a  ;

2)扇形統(tǒng)計圖中D小組所對應的扇形圓心角為n°,求n的值并補全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?

查看答案和解析>>

同步練習冊答案