【題目】如圖,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5,過點(diǎn)A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數(shù)y=(x≠0)的圖象相交于點(diǎn)P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設(shè)其面積分別為S1、S2、S3、S4、S5,則S10=_____.(n≥1的整數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1,且過點(diǎn)(,0).有下列結(jié)論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結(jié)論是_____(填寫正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,點(diǎn)E、F是對(duì)角線BD上的兩點(diǎn),且BE=FD.
(1)若四邊形AECF是平行四邊形,求證:四邊形ABCD是平行四邊形;
(2)若四邊形AECF是菱形,那么四邊形ABCD也是菱形嗎?為什么?
(3)若四邊形AECF是矩形,試判斷四邊形ABCD是否為矩形,不必寫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn):課堂上,學(xué)生對(duì)概念的接受能力s與提出概念的時(shí)間t(單位:min)之間近似滿足函數(shù)關(guān)系s=at2+bt+c(a≠0),s值越大,表示接受能力越強(qiáng).如圖記錄了學(xué)生學(xué)習(xí)某概念時(shí)t與s的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出當(dāng)學(xué)生接受能力最強(qiáng)時(shí),提出概念的時(shí)間為( )
A. 8min B. 13min C. 20min D. 25min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,將邊AB所在直線繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角度α得到直線AM,過點(diǎn)C作CE⊥AM,垂足為E,連接BE.
(1)當(dāng)0°<α<45°時(shí),設(shè)AM交BC于點(diǎn)F,
①如圖1,若α=35°,則∠BCE= °;
②如圖2,用等式表示線段AE,BE,CE之間的數(shù)量關(guān)系,并證明;
(2)當(dāng)45°<α<90°時(shí)(如圖3),請(qǐng)直接用等式表示線段AE,BE,CE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,P為邊CD上一點(diǎn),把△BCP沿直線BP折疊,頂點(diǎn)C折疊到C',連接BC'與AD交于點(diǎn)E,連接CE與BP交于點(diǎn)Q,若CE⊥BE.
(1)求證:△ABE∽△DEC;
(2)當(dāng)AD=13時(shí),AE<DE,求CE的長;
(3)連接C'Q,直接寫出四邊形C'QCP的形狀: .當(dāng)CP=4時(shí),并求CEEQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,請(qǐng)畫出△A1B1C1.
(2)在x軸上求作一點(diǎn)P,使△PA1C1的周長最小,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點(diǎn)在地面A處測得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測得點(diǎn)M的仰角為,米,且A、B、P三點(diǎn)在一直線上請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APQ是直角三角形時(shí),t的值為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com