【題目】某校為了解學生“自主學習、合作交流” 的情況,對某班部分同學進行了一段時間的跟蹤調(diào)查,將調(diào)查結(jié)果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)補全條形統(tǒng)計圖;

(2)扇形統(tǒng)計圖中,求類所占圓心角的度數(shù);

(3)學校想從被調(diào)查的類(1名男生2名女生)和D類(男女生各占一半)中分別選取一位同學進行“一幫一”互助學習,請用畫樹形圖或列表的方法求所選的兩位同學恰好是一男一女的概率.

【答案】(1)圖見解析;(2)36°;(3)

【解析】試題分析: (1)由條形統(tǒng)計圖與扇形統(tǒng)計圖,可求得C,D的人數(shù),繼而補全統(tǒng)計圖;
(2)由D占10%,即可求得扇形統(tǒng)計圖中,D類所占圓心角;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選的兩位同學恰好是一男一女的情況,再利用概率公式即可求得答案.

試題解析:(1)B有10人,占50%,

總?cè)藬?shù):10÷50%=20(人),

A占:3÷20=15%,

D占:1-25%-15%-50%=10%,

C類:20×25%=5人,D類:20×10%=2人,

補全統(tǒng)計圖:

(2)D類所占圓心角為:10%×360°=36°;

(3)畫樹狀圖得:

共有6種等可能的結(jié)果,所選的兩位同學恰好是一男一女的有3種情況,

所選的兩位同學恰好是一男一女的概率為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)(x0)的圖象經(jīng)過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2).

(1)求反比例函數(shù)的表達式;

(2)求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,且AB=4,點C在半徑OA上(點C與點O、A不重合),過點CAB的垂線交⊙O于點D,連接OD,過點BOD的平行線交⊙O于點E,交CD的延長線于點F.

(1)若∠F=30°,請證明E 的中點;

(2)若AC=,求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用直尺和圓規(guī)作一個角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=AOB的依據(jù)是( )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,ABAC,點D、E分別在ABAC上,且BDCE

1)找出圖中所有的全等的三角形.

2)選一組全等三角形進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,使ΔABCΔADC成立的條件是(

A.AB=AD,∠B=DB.AB=AD,∠ACB=ACD

C.BC=DC,∠BAC=DACD.AB=AD,∠BAC=DAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=12cm,BC=9cm,點DAB的中點.

1)如果點P在線段BC上以3厘米/秒的速度由BC點運動,同時點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,當經(jīng)過1秒時,BPDCQP是否全等,請判斷并說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPD≌△CPQ?

2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在ABC的哪條邊上會相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們用f(x)表示不大于x的最大整數(shù),例如:f(2.3)=2,f(4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整數(shù).例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解決下列問題:

(1)根據(jù)以上運算規(guī)律:f(﹣5.4)=______,g(4.5)=______

(2)若f(x)=3,則x的取值范圍是_______;若g(y)=﹣2,則y的取值范圍是______

(3)已知x,y滿足,求x,y的取值范圍.

查看答案和解析>>

同步練習冊答案