如圖,在邊長為1的正方形組成的網(wǎng)格中,△ABC的頂點都在格點上,將△ABC繞點C順時針旋轉(zhuǎn)60°,則頂點A所經(jīng)過的路徑長為( )

A.10π
B.
C.π
D.π
【答案】分析:由題意可知點A所經(jīng)過的路徑為以C為圓心,CA長為半徑,圓心角為60°的弧長,故在直角三角形ACD中,由AD及DC的長,利用勾股定理求出AC的長,然后利用弧長公式即可求出.
解答:解:如圖所示:

在Rt△ACD中,AD=3,DC=1,
根據(jù)勾股定理得:AC==,
又將△ABC繞點C順時針旋轉(zhuǎn)60°,
則頂點A所經(jīng)過的路徑長為l==π.
故選C
點評:此題考查了弧長公式,以及勾股定理,解本題的關(guān)鍵是根據(jù)題意得到點A所經(jīng)過的路徑為以C為圓心,CA長為半徑,圓心角為60°的弧長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,如果邊長為1的正六邊形ABCDEF繞著頂點A順時針旋轉(zhuǎn)60°后與正六邊形AGHMNP重合,那么點B的對應(yīng)點是點
 
,點E在整個旋轉(zhuǎn)過程中,所經(jīng)過的路徑長為
 
 (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,
1
2
a
長為半徑作
DE
EF
,
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,數(shù)學(xué)公式長為半徑作數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初三數(shù)學(xué)圓及旋轉(zhuǎn)題庫 第8講:弧長和扇形面積(解析版) 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,長為半徑作,,,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案