如圖,在平面直角坐標系中,過格點A,B,C作一圓弧,點B與圖中4×7方格中的格點的連線中,能夠與該圓弧相切的格點個數(shù)有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:由弦AB與弦BC的垂直平分線的交點為圓心,找出圓心O′的位置,確定出圓心坐標,過點B與圓相切時,根據(jù)切線的判定方法得到∠O′BF為直角時,BF與圓相切,根據(jù)網(wǎng)格找出滿足條件的F坐標即可.
解答:解:根據(jù)過格點A,B,C作一圓弧,

由圖形可得:三點組成的圓的圓心為:O′(2,0),
只有∠O′BF=∠O′BD+∠EBF=90°時,BF與圓相切,
此時△BO′D≌△FBE,EF=BD=2,
∴F點的坐標為:(5,1)或(1,3)或(7,0),
則點B與下列格點的連線中,能夠與該圓弧相切的是(5,1)或(1,3)或(7,0),共3個.
故選C.
點評:此題考查了切線的判定與性質(zhì),勾股定理,全等三角形的判定與性質(zhì),以及點的坐標與直角坐標系,其中確定出圓心O′的坐標是本題的突破點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案