【題目】如圖,購(gòu)買一種蘋果,所付款金額y(元)與購(gòu)買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購(gòu)買5千克這種蘋果比分五次購(gòu)買1千克這種蘋果可節(jié)。 )元.

A.6
B.8
C.9
D.12

【答案】A
【解析】解:設(shè)y關(guān)于x的函數(shù)關(guān)系式為y=kx+b,

當(dāng)0≤x≤2時(shí),將(0,0)、(2,20)代入y=kx+b中,

,解得: ,

∴y=10x(0≤x≤2);

當(dāng)x≥2時(shí),將(2,20)、(4,36)代入y=kx+b中,

,解得:

∴y=8x+4(x≥2).

當(dāng)x=1時(shí),y=10x=10;

當(dāng)x=5時(shí),y=44.

10×5﹣44=6(元).

所以答案是:A.

【考點(diǎn)精析】本題主要考查了確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí)點(diǎn),需要掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問(wèn)題的一般方法是待定系數(shù)法才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠新開(kāi)發(fā)生產(chǎn)一種機(jī)器,每臺(tái)機(jī)器成本y(萬(wàn)元)與生產(chǎn)數(shù)量x(臺(tái))之間滿足一次函數(shù)關(guān)系(其中10x70,且為整數(shù)),函數(shù)y與自變量x的部分對(duì)應(yīng)值如表

x單位:臺(tái))

10

20

30

y(單位:萬(wàn)元/臺(tái))

60

55

50

1)求yx之間的函數(shù)關(guān)系式;

2)市場(chǎng)調(diào)查發(fā)現(xiàn),這種機(jī)器每月銷售量z(臺(tái))與售價(jià)a(萬(wàn)元/臺(tái))之間滿足如圖所示的函數(shù)關(guān)系.

該廠第一個(gè)月生產(chǎn)的這種機(jī)器40臺(tái)都按同一售價(jià)全部售出,請(qǐng)求出該廠第一個(gè)月銷售這種機(jī)器的總利潤(rùn).(注:利潤(rùn)=售價(jià)﹣成本)

若該廠每月生產(chǎn)的這種機(jī)器當(dāng)月全部售出,則每個(gè)月生產(chǎn)多少臺(tái)這種機(jī)器才能使每臺(tái)機(jī)器的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

某“綜合與實(shí)踐”小組開(kāi)展了“長(zhǎng)方體紙盒的制作”實(shí)踐活動(dòng),他們利用邊長(zhǎng)為的正方形紙板制作出兩種不同方案的長(zhǎng)方體盒子(圖1為無(wú)蓋的長(zhǎng)方體紙盒,圖2為有蓋的長(zhǎng)方體紙盒),請(qǐng)你動(dòng)手操作驗(yàn)證并完成任務(wù).(紙板厚度及接縫處忽略不計(jì))

動(dòng)手操作一:

根據(jù)圖1方式制作一個(gè)無(wú)蓋的長(zhǎng)方體盒子.方法:先在紙板四角剪去四個(gè)同樣大小邊長(zhǎng)為的小正方形,再沿虛線折合起來(lái).

問(wèn)題解決

(1)該長(zhǎng)方體紙盒的底面邊長(zhǎng)為_(kāi)______;(請(qǐng)你用含的代數(shù)式表示)

(2)若,,則長(zhǎng)方體紙盒的底面積為_(kāi)______;

動(dòng)手操作二:

根據(jù)圖2方式制作一個(gè)有蓋的長(zhǎng)方體紙盒.方法:先在紙板四角剪去兩個(gè)同樣大小邊長(zhǎng)為的小正方形和兩個(gè)同樣大小的小長(zhǎng)方形,再沿虛線折合起來(lái).

拓展延伸

(3)該長(zhǎng)方體紙盒的體積為_(kāi)_____;(請(qǐng)你用含的代數(shù)式表示)

(4)現(xiàn)有兩張邊長(zhǎng)均為的正方形紙板,分別按圖1、圖2的要求制作無(wú)蓋和有蓋的兩個(gè)長(zhǎng)方體盒子,若,求無(wú)蓋盒子的體積是有蓋盒子體積的多少倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(13世紀(jì))所著的《詳解九章算術(shù)》一書(shū)中,用如下的三角形解釋(a+b)n的展開(kāi)式中各項(xiàng)的系數(shù),此三角形稱為“楊輝三角”,

即:(a+b)1=a+b

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

根據(jù)“楊輝三角”計(jì)算出(a+b)10的展開(kāi)式中第三項(xiàng)的系數(shù)為(  )

A.10B.45C.46D.50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于反比例函數(shù)y= ,下列說(shuō)法中正確的是( )
A.它的圖象分布在第二、四象限
B.它的圖象過(guò)點(diǎn)(﹣6,﹣2)
C.當(dāng)x<0時(shí),y的值隨x的增大而減小
D.與y軸的交點(diǎn)是(0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB3,AD9,點(diǎn)E在邊AD上,AE1,過(guò)E、D兩點(diǎn)的圓的圓心O在邊AD的上方,直線BOAD于點(diǎn)F,作DGBO,垂足為G.當(dāng)△ABF與△DFG全等時(shí),⊙O的半徑為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,O為原點(diǎn),已知A1,1),在坐標(biāo)軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC90°,點(diǎn)DBC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AEBC于點(diǎn)F

(1)如圖①,當(dāng)AEBC時(shí),寫出圖中所有與∠B相等的角:  ;所有與∠C相等的角:   

(2)若∠C-∠B50°,∠BADx°(0x45)

求∠B的度數(shù);

②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E、FABCD對(duì)角線AC上的兩點(diǎn),且BEACDFAC.

(1)請(qǐng)寫出圖中全等三角形(不再添加輔助線).

(2)求證:△ABE≌△CDF;

查看答案和解析>>

同步練習(xí)冊(cè)答案