【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
【答案】
(1)
解;∵反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4),
∴ ,
解得,k=2,
∴點A(1,2),
∴2=1+b,得b=1,
即這兩個函數(shù)的表達式分別是: ,y=x+1;
(2)
解;
解得, 或 ,
即這兩個函數(shù)圖象的另一個交點B的坐標是(﹣2,﹣1);
將y=0代入y=x+1,得x=﹣1,
∴OC=|﹣1|=1,
∴S△AOB=S△AOC+S△BOC= ,
即△AOB的面積是 ;
(3)
解;根據(jù)圖象可得反比例函數(shù)值大于一次函數(shù)值的x的取值范圍是x<﹣2或0<x<1.
【解析】(1)根據(jù)反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4),可以求得k的值,從而可以求得點A的坐標,從而可以求出一次函數(shù)y=x+b中b的值,本題得以解決;(2)將第一問中求得的兩個解析式聯(lián)立方程組可以求得點B的坐標,進而可以求得△AOB的面積;(3)根據(jù)函數(shù)圖象可以解答本題.
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關(guān)知識,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠,以及對反比例函數(shù)的圖象的理解,了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級隨機抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)這次隨機抽取的學(xué)生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學(xué)校九年級共有學(xué)生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,AB=CB,AD=CD.求證:∠C=∠A.
(2)如圖2,點B、F、C、E在一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD.求證:AB=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CF⊥AB于F,BE⊥AC于E,M為BC的中點.
(1)若EF=3,BC=8,求△EFM的周長;
(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結(jié)CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把邊長為3的正方形ABCD繞點A順時針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( 。
A.
B.6
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當(dāng)|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了豐富學(xué)生的校園體育鍛煉生活,決定根據(jù)學(xué)生的興趣愛好采購一批體育用品供學(xué)生課后鍛煉使用,因此學(xué)校隨機抽取了部分同學(xué)就興趣愛好進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)設(shè)學(xué)校這次調(diào)查共抽取了n名學(xué)生,直接寫出n的值;
(2)請你補全條形統(tǒng)計圖;
(3)設(shè)該校共有學(xué)生1200名,請你估計該校有多少名學(xué)生喜歡跳繩?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com