將-π,0,2
3
,-3.15,3.5用“>”連接:______.
∵2
3
=
12
,3.5=
49
4
,∴3.5>2
3

∵-π=-3.1415…,∴-π>-3.15.
∴3.5>2
3
>0>-π>-3.15.
故填空答案:3.5>2
3
>0>-π>-3.15.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為6+2
3
的等邊△ABC折疊,折痕為DE,點(diǎn)B與點(diǎn)F重合,EF和DF分別交AC于點(diǎn)M、N,DF⊥AB,垂足為D,AD=2.設(shè)△DBE的面積為S,則重疊部分的面積為
 
.(用含S的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小明將一塊邊長為2
3
的正方形紙片折疊成領(lǐng)帶形狀,其中∠D′CF=30°,B點(diǎn)落在CF邊上的B′處,則AB′的長為
3
2
-
6
3
2
-
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1是一個(gè)3×3方陣圖,每行的三個(gè)數(shù)、每列的三個(gè)數(shù),每斜對(duì)角的三個(gè)數(shù)相加的和均相等.

如何把9個(gè)連續(xù)整數(shù)迅速填入一個(gè)3×3方陣,使每行、每列、每斜對(duì)角的三個(gè)數(shù)相加的和均相等,是我們祖先早就在研究的問題.古代的“洛書”、漢朝徐岳的“九宮算”就揭示出祖先們得到的神奇填寫方法.圖1顯示出把-4,-3,-2,-1,0,1,2,3,4填入一個(gè)3×3方陣,使每行、每列、每斜對(duì)角的三個(gè)數(shù)相加的和均相等的一種方法.同學(xué)們,你能正確填寫嗎?馬上試一試:
(1)請(qǐng)觀察圖1中數(shù)字的填寫規(guī)律,然后將下列各數(shù)組中的9個(gè)數(shù)分別填入圖2、圖3、圖4所示的9個(gè)空格中,使得每行的三個(gè)數(shù)、每列的三個(gè)數(shù),每斜對(duì)角的三個(gè)數(shù)相加的和均相等;
①6,5,4,3,2,1,0,-1,-2
②9,8,7,6,5,4,3,2,1
③-8,-6,-4,-2,0,2,4,6,8
(2)拓展探究:在圖5所示 9個(gè)空格中,填入5個(gè)2和4個(gè)-2,使得每行、每列、每斜對(duì)角的三個(gè)數(shù)的乘積都是8;
(3)拓展再探究:將25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1這25個(gè)數(shù)分別填入圖 6所示25個(gè)空格中,使得每行、每列、每斜對(duì)角的五個(gè)數(shù)相加的和均相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把兩個(gè)全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。

(1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時(shí),如圖23-1,求GH:GK的值.

(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:

0°<<30°,如圖23-2,EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省岳陽市初三上學(xué)期末數(shù)學(xué)卷 題型:解答題

把兩個(gè)全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。

(1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時(shí),如圖23-1,求GH:GK的值.

(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:

0°<<30°,如圖23-2,EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案