【題目】下面是創(chuàng)意機(jī)器人大觀園中十種類型機(jī)器人套裝的價(jià)目表.六一兒童節(jié)期間,小明在這里看好了類型④的機(jī)器人套裝,爸爸說:今天有促銷活動(dòng),九折優(yōu)惠呢!你可以再選一套,但兩套最終不超過1200元.那么小明再買第二套機(jī)器人可選擇價(jià)格最貴的類型是( 。

類型

價(jià)格/

1800

1350

1200

800

675

516

360

300

280

188

A.B.C.D.

【答案】C

【解析】

根據(jù)題意和表格中的數(shù)據(jù)可以列出相應(yīng)的一元一次不等式,從而可以求得小明再買第二套機(jī)器人可選擇價(jià)格最貴的類型是哪種,本題得以解決.

由題意可得這一天小明購買類型④需要花費(fèi)(元).

設(shè)小明購買類型④后剩下的錢還可以購買的套裝的錢數(shù)為x元.

,解得

∴小明再買第二套機(jī)器人可選擇價(jià)格最貴的類型是⑥,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)由 5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 ,另兩張直角三角形紙片的面積都為 S2,中間一張正方形紙片的面積為S3,則這個(gè)平行四邊形的面積一定可以表示為( )

A. 4S2B. 4S2S3C. 3S14S3D. 4S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下圖,完成下列推理過程.

(1)∵∠1∠A(已知), ADBC

.(________________________________________________________)

(2)∵∠3∠4(已知),∴CDAB

.(________________________________________________________)

(3)∵∠2∠5(已知),∴ADBC

.(________________________________________________________)

(4)∵∠ADC∠C180°(已知),∴ADBC

.(________________________________________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( )

①AD是BAC的平分線;

ADC=60°;

③點(diǎn)D在AB的中垂線上;

④BD=2CD.

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線y=x2+bx﹣c經(jīng)過直線y=x﹣3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.

(1)求此拋物線的解析式;

(2)求SABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+8的圖象分別交x軸、y軸于AB兩點(diǎn),過點(diǎn)A的直線交y軸正半軸于點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).

1)求直線AM的函數(shù)解析式.

2)試在直線AM上找一點(diǎn)P,使得SABP=SAOB,求出點(diǎn)P的坐標(biāo).

3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、B、M、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P.Q分別是邊長(zhǎng)為4cm的等邊△ABCAB.BC上的點(diǎn),點(diǎn)P從頂點(diǎn)AB出發(fā),點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā)向C點(diǎn)運(yùn)動(dòng),且它們的速度都為1cm/s,

1)連接AQ.CP交于點(diǎn)M,則在P.Q運(yùn)動(dòng)的過程中,△ABQ與△CAP全等嗎?請(qǐng)說明理由;

2)∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).

3)幾秒后△PBQ是直角三角形?

4)如圖2,若點(diǎn)P.Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB.BC上運(yùn)動(dòng),直線AQ.CP交點(diǎn)為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個(gè)數(shù)有(  )

①已知直角三角形的面積為2,兩直角邊的比為12,則斜邊長(zhǎng)為;

②直角三角形的最大邊長(zhǎng)為,最短邊長(zhǎng)為1,則另一邊長(zhǎng)為;

③在△ABC中,若∠A:∠B:∠C=1:56,則△ABC為直角三角形;

④等腰三角形面積為12,底邊上的高為4,則腰長(zhǎng)為5

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案