【題目】如圖,已知直線AB的函數(shù)解析式為y=2x+10,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B.

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)P(a,b)為線段AB上的一個(gè)動(dòng)點(diǎn),作PE⊥y軸于點(diǎn)E,PF⊥x軸于點(diǎn)F,連接EF,問:

①若△PBO的面積為S,求S關(guān)于a的函數(shù)解析式;

②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請(qǐng)說明理由.

【答案】(1)A(0,10),B(-5,0);(2)①S=5a+25(-5≤a≤0);②存在點(diǎn)P使得EF的值最小,最小值為2.

【解析】(1)由直線AB解析式,令x=0y=0分別求出yx的值,即可確定出AB的坐標(biāo);

(2)①把P坐標(biāo)代入直線AB解析式,得到ab的關(guān)系式,三角形POB面積等于OB為底邊,P的縱坐標(biāo)為高,表示出Sa的解析式即可;

②存在,理由為:利用三個(gè)角為直角的四邊形為矩形,得到四邊形PFOE為矩形,利用矩形的對(duì)角線相等得到EF=PO,由O為定點(diǎn),P為動(dòng)點(diǎn),得到OP垂直于AB時(shí),OP取得最小值,利用面積法求出OP的長(zhǎng),即為EF的最小值.

(1)對(duì)于直線AB的解析式y=2x+10,

x=0,得到y=10,

y=0,得到x=-5,

A(0,10),B(-5,0);

(2)連接OP,如圖,

①∵P(a,b)在線段AB上,∴b=2a+10,

0≤2a+10≤10,得到-5≤a≤0,

由(1)得OB=5,

OB·(2a+10),

S=(2a+10)=5a+25(-5≤a≤0);

②存在,理由:

∵∠PFO=FOE=OEP=90°,

∴四邊形PFOE為矩形,∴EF=PO,

O為定點(diǎn),P在線段AB上運(yùn)動(dòng),

∴當(dāng)OPAB時(shí),OP取得最小值,

AB·OP=OB·OA,

×5·OP=×5×10,解得OP=2,

EF=OP=2,

綜上,存在點(diǎn)P使得EF的值最小,最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小明,小紅等同學(xué)隨父母一同去某景點(diǎn)旅游,在購(gòu)買門票時(shí),小明和小紅有圖1所示的對(duì)話,根據(jù)圖2的門票票價(jià)和圖1所示的對(duì)話內(nèi)容完成下列問題.

(1)他們一共去了幾個(gè)成人幾個(gè)學(xué)生?

(2)請(qǐng)你幫他們算一算,用哪種方式買票更省錢,省多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過點(diǎn)DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請(qǐng)參照上述證法,利用圖2完成下面的證明.

將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)EAD上一點(diǎn),FG⊥CE分別交AB、CDF、G,垂足為O.

(1)求證:CE=FG;

(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。

的值;

AD=3,則OE的長(zhǎng)為_________(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對(duì)稱軸的拋物線過A,B,C三點(diǎn).

(1)求該拋物線的函數(shù)解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線對(duì)稱軸與BC的交點(diǎn),過點(diǎn)P作PH⊥直線l于點(diǎn)H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時(shí),過點(diǎn)P分別作x軸、直線l的垂線,垂足為點(diǎn)E,F(xiàn).是否存在這樣的點(diǎn)P,使以P,E,F(xiàn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店第一次用400元購(gòu)進(jìn)膠皮筆記本若干個(gè),第二次又用400元購(gòu)進(jìn)該種型號(hào)的筆記本,但這次每個(gè)的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.25倍,購(gòu)進(jìn)數(shù)量比第一次少了20個(gè).

1)求第一次每個(gè)筆記本的進(jìn)價(jià)是多少?

2)若要求這兩次購(gòu)進(jìn)的筆記本按同一價(jià)格全部銷售完畢后后獲利不低于460元,問每個(gè)筆記本至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,C=90°,沿過B點(diǎn)的一條直線BE折疊這個(gè)三角形, 使C點(diǎn)與AB邊上的一點(diǎn)D重合.

(1)當(dāng)A滿足什么條件時(shí),點(diǎn)D恰為AB的中點(diǎn)?寫出一個(gè)你認(rèn)為適當(dāng)?shù)臈l件,并利用此條件證明DAB的中點(diǎn);

(2)在(1)的條件下,若DE=1,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面文字,然后按要求解題.

例:1+2+3+…+100=?如果一個(gè)一個(gè)順次相加顯然太繁,我們仔細(xì)分析這100個(gè)連續(xù)自然數(shù)的規(guī)律和特點(diǎn),可以發(fā)現(xiàn)運(yùn)用加法的運(yùn)算律,是可以大大簡(jiǎn)化計(jì)算,提高計(jì)算速度的.

因?yàn)?/span>1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果.

:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)==5050.

(1)補(bǔ)全例題解題過程;

(2)計(jì)算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC為⊙O的直徑,A為圓上一點(diǎn),點(diǎn)F為 的中點(diǎn),延長(zhǎng)AB、AC,與過F點(diǎn)的切線交于D、E兩點(diǎn).
(1)求證:BC∥DE;
(2)若BC:DF=4:3,求tan∠ABC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案