如圖,已知△ABC內接于⊙O,AC是⊙O的直徑,D是的中點,過點D作直線BC的垂線,分別交CB、CA的延長線E、F

(1)求證:EF是⊙O的切線;
(2)若EF=12,EC=9,求⊙O的半徑.

(1)要證EF是⊙O的切線,只要連接OD,再證OD⊥EF即可;(2)

解析試題分析:(1)要證EF是⊙O的切線,只要連接OD,再證OD⊥EF即可;
(2)先根據(jù)勾股定理求出CF的長,再根據(jù)相似三角形的判定和性質求出⊙O的半徑.
(1)連接OD交于AB于點G.

∵D是的中點,OD為半徑,
∴AG=BG.
∵AO=OC,
∴OG是△ABC的中位線.
∴OG∥BC,
即OD∥CE.
又∵CE⊥EF,
∴OD⊥EF,
∴EF是⊙O的切線;
(2)在Rt△CEF中,EF=12,EC=9
∴CF=15
設半徑OC=OD=r,則OF=15-r,
∵OD∥CE,
∴△FOD∽△FCE,

,解得
即⊙O的半徑為.
考點:切線的判定,相似三角形的判定和性質
點評:要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC內接于⊙O,∠C=45°,AB=4,則⊙O的半徑為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC內接于⊙O,AD平分∠BAC,交⊙O于點D,過D作⊙O的切線與AC的延長線交于點E.
(1)求證:BC∥DE;
(2)若AB=3,BD=2,求CE的長;
(3)在題設條件下,為使BDEC是平行四邊形,△ABC應滿足怎樣的條件(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樊城區(qū)模擬)如圖,已知△ABC內接于⊙O,弦AD交BC于E,過點D的切線MN交直線AB于M,交直線AC于N.
(1)求證:AE•DE=BE•CE;
(2)連接DB,CD,若MN∥BC,試探究BD與CD的數(shù)量關系;
(3)在(2)的條件下,已知AB=6,AN=15,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC內接于⊙O,AE平分∠BAC,且AD⊥BC于點D,連接OA.
求證:∠OAE=∠EAD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC內接于⊙O,AB=AC,∠A=36°,CD是⊙O的直徑,求∠ACD的度數(shù).

查看答案和解析>>

同步練習冊答案