(2011•資陽)在某校校園文化建設(shè)活動(dòng)中,小彬同學(xué)為班級(jí)設(shè)計(jì)了一個(gè)班徽,這個(gè)班徽?qǐng)D案由一對(duì)大小相同的較大半圓挖去一對(duì)大小相同的較小半圓而得.如圖,若它們的直徑在同一直線上,較大半圓O1的弦AB∥O1O2,且與較小半圓O2相切,AB=4,則班徽?qǐng)D案的面積為( 。
分析:由題意可知班徽?qǐng)D案的面積=大圓的面積-小圓的面積即圓環(huán)面積.
解答:解:平移小圓使O1和O2重合,
設(shè)與較小半圓O2相切的切點(diǎn)為C,連接01C,O1A,

∴O1C⊥AB,
∴AC=BC=
1
2
AB=2,
∵S陰影=S-S=π(AO12-O1C12)=πAC2=4π.
故選D.
點(diǎn)評(píng):本題考查了圓的面積公式和垂徑定理、切線的性質(zhì)定理的運(yùn)用,解題的關(guān)鍵是把陰影部分面積轉(zhuǎn)化為圓環(huán)的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•資陽)如圖,在數(shù)軸上表示實(shí)數(shù)
14
的點(diǎn)可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•資陽)在資陽市團(tuán)委發(fā)起的“暖冬行動(dòng)”中,某班50名同學(xué)響應(yīng)號(hào)召,紛紛捐出零花錢.若不同捐款金額的捐款人數(shù)百分比統(tǒng)計(jì)結(jié)果如圖所示,則該班同學(xué)平均每人捐款
14
14
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•資陽)如圖,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點(diǎn)E,連接DE,作EF⊥DE,交直線AB于點(diǎn)F.
(1)若點(diǎn)F與B重合,求CE的長;
(2)若點(diǎn)F在線段AB上,且AF=CE,求CE的長;
(3)設(shè)CE=x,BF=y,寫出y關(guān)于x的函數(shù)關(guān)系式(直接寫出結(jié)果可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•資陽)在一次機(jī)器人測(cè)試中,要求機(jī)器人從A出發(fā)到達(dá)B處.如圖1,已知點(diǎn)A在O的正西方600cm處,B在O的正北方300cm處,且機(jī)器人在射線AO及其右側(cè)(AO下方)區(qū)域的速度為20cm/秒,在射線AO的左側(cè)(AO上方)區(qū)域的速度為10cm/秒.
(1)分別求機(jī)器人沿A→O→B路線和沿A→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(2)若∠OCB=45°,求機(jī)器人沿A→C→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(3)如圖2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.試說明:從A出發(fā)到達(dá)B處,機(jī)器人沿A→P→B路線行進(jìn)所用時(shí)間最短.
(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732,
5
≈2.236,
6
≈2.449)

查看答案和解析>>

同步練習(xí)冊(cè)答案