在△ABC中,∠BAC=90°,AB=AC=,⊙A的半徑為1,若點(diǎn)O在BC上運(yùn)動(dòng)(與B,C不重合)設(shè)OB=X,△AOC的面積為Y.

(1)求Y與X的函數(shù)關(guān)系式,指出自變量X的取值范圍;

(2)以點(diǎn)O為圓心,OB長(zhǎng)為半徑作⊙O,當(dāng)⊙O與⊙A相切時(shí)△AOC的面積.

答案:
解析:

  (1)過(guò)點(diǎn)A作AH⊥BC于H

  ∵∠BAC=90°,AB=AC=

  ∴BC=4,AH=2,

  ∴

  即y=-x+4(0<x<4)

  (2)當(dāng)點(diǎn)O與點(diǎn)H重合時(shí),圓O與圓A相交,不合題意;當(dāng)點(diǎn)O與點(diǎn)H不重合時(shí),在Rt△AOH中,

  ∵圓A的半徑為1,圓O的半徑為x,

  ∴①當(dāng)圓A與圓O外切時(shí),

  解得x=,=y(tǒng)=

 、诋(dāng)圓A與圓O內(nèi)切時(shí),

  解得x==y(tǒng)=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng)精英家教網(wǎng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x.
(1)當(dāng)x為何值時(shí),PQ∥BC;
(2)當(dāng)
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點(diǎn),P是線(xiàn)段BM上的動(dòng)點(diǎn),將線(xiàn)段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)2α得到線(xiàn)段PQ.
(1)若α=60°且點(diǎn)P與點(diǎn)M重合(如圖1),線(xiàn)段CQ的延長(zhǎng)線(xiàn)交射線(xiàn)BM于點(diǎn)D,請(qǐng)補(bǔ)全圖形,并寫(xiě)出∠CDB的度數(shù);

(2)在圖2中,點(diǎn)P不與點(diǎn)B,M重合,線(xiàn)段CQ的延長(zhǎng)線(xiàn)于射線(xiàn)BM交于點(diǎn)D,猜想∠CDB的大。ㄓ煤恋拇鷶(shù)式表示),并加以證明;
(3)對(duì)于適當(dāng)大小的α,當(dāng)點(diǎn)P在線(xiàn)段BM上運(yùn)動(dòng)到某一位置(不與點(diǎn)B,M重合)時(shí),能使得線(xiàn)段CQ的延長(zhǎng)線(xiàn)與射線(xiàn)BM交于點(diǎn)D,且PQ=QD,請(qǐng)直接寫(xiě)出α的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以4cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點(diǎn),且滿(mǎn)足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點(diǎn)B為旋轉(zhuǎn)中心,將△BEC按逆時(shí)針旋轉(zhuǎn)∠ABC,得到△BE′A(點(diǎn)C與點(diǎn)A重合,點(diǎn)E到點(diǎn)E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點(diǎn),且滿(mǎn)足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒4cm,的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),BP=CQ
(2)當(dāng)x為何值時(shí),PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案