【題目】如圖,矩形中,對角線,相交于點,平分交于點,,則的度數(shù)為( )
A.B.C.D.
【答案】B
【解析】
由矩形ABCD,得到OA=OB,根據(jù)AE平分∠BAD,可得到等邊三角形OAB和等腰直角三角形ABE,然后可得OB=BE,求出∠OBE,即可得到∠BOE,然后加上∠AOB,可得的度數(shù).
∵四邊形ABCD是矩形,
∴AD∥BC,AC=BD,OA=OC,OB=OD,∠ABC=∠BAD=90°,
∴OA=OB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°=∠AEB,
∴AB=BE,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=60°
∴△BAO是等邊三角形,
∴AB=OB=BE,∠ABO=∠AOB=60°,
∴∠OBE=90°60°=30°,
∴在等腰△BOE中,
∴∠AOE=∠BOE+∠AOB=75°+60°=135°.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=﹣x2+bx+c的部分圖象與x軸、y軸的交點分別為A(1,0),B(0,3),對稱軸是x=﹣1,在下列結(jié)論中,正確的是( 。
A.頂點坐標為(﹣1,3)
B.拋物線與x軸的另一個交點是(﹣4,0)
C.當x<0時,y隨x的增大而增大
D.b+c=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點D為AB邊上一點(不與點B重合),連接CD,將線段CD繞點D逆時針旋轉(zhuǎn)90°,點C的對應(yīng)點為E,連接BE.若AB=2,則△BDE面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=,y=﹣2018x2+2019,y=2018x2共有的性質(zhì)是( )
A.開口向上
B.對稱軸是y軸
C.當x>0時,y隨x的增大而增大
D.都有最低點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3(a≠0,且a,b為常數(shù))的圖象經(jīng)過點(2,1)和(3,0).
(1)試求這條拋物線的解析式;
(2)若將拋物線進行上、下或左、右平移,請你寫出一種平移的方法,使平移后的拋物線頂點落在直線y=x上,并直接寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(a+b)x+c2+2ab=0有兩個相等的實數(shù)根,其中a、b、c為△ABC的三邊長.
(1)試判斷△ABC的形狀,并說明理由;
(2)若CD是AB邊上的高,AC=2,AD=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com