【題目】在平面直角坐標(biāo)系中,點,若射線上存在點,使得是以為腰的等腰三角形,就稱點為線段關(guān)于射線的等腰點.
(1)如圖, ,
①若,則線段關(guān)于射線的等腰點的坐標(biāo)是_____;
②若,且線段關(guān)于射線的等腰點的縱坐標(biāo)小于1,求的取值范圍;
(2) 若,且射線上只存在一個線段關(guān)于射線的等腰點,則的取值范圍是__________.
【答案】(1)(0,2);(2);(3)或或或
【解析】
(1)①根據(jù)線段AB關(guān)于射線OC的等腰點的定義可知OP=AB=2,即可解答;
②如圖,設(shè)以點為圓心, 為半徑的圓與直線在第二象限的交點為,作垂直軸于點,C位于D點左側(cè)時滿足條件;
(2)如圖,作CH⊥y軸于H.分別以A,B為圓心,AB為半徑作⊙A,⊙B,先求出∠COH=30°,由射線OC上只存在一個線段AB關(guān)于射線OC的等腰點,推出射線OC與⊙A,⊙B只有一個交點,然后討論幾種特殊情況即可找到范圍.
解:(1)①如圖1中,由題意可知A(0,0),B(2,0),C(0,1),
∵點P是線段AB關(guān)于射線OC的等腰點,
∴OP=AB=2,
∴P(0,2);
②如圖,設(shè)以點為圓心, 為半徑的圓與直線在第二象限的交點為,作垂直軸于點,
,
在中,根據(jù)勾股定理得,
的取值范圍是;
(2)如下圖,作CH⊥y軸于H.分別以A,B為圓心,AB為半徑作⊙A,⊙B.
由題意C(,1),
∴CH=,OH=1,
∴tan∠COH,
∴∠COH=30°,
當(dāng)⊙B經(jīng)過原點時,B(-2,0),此時t=-4,
∵射線OC上只存在一個線段AB關(guān)于射線OC的等腰點,
∴射線OC與⊙A,⊙B只有一個交點,觀察圖象可知當(dāng)-4<t≤-2時,滿足條件,
如下圖,當(dāng)點A在原點時,∵∠POB=60°,此時兩圓的交點P在射線OC上,滿足條件,此時t=0,
如下圖,當(dāng)⊙B與OC相切于P時,連接BP,
∴OC是⊙B的切線,
∴OP⊥BP,
∴∠OPB=90°,
∵BP=2,∠POB=60°,
∴,
∴,此時,
如下圖,當(dāng)⊙A與OC相切時,同法可得,此時,
觀察圖形可知,滿足條件的t的值為,
綜上所述,滿足條件t的值為或或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對“防溺水”安全知識的掌握情況,從全校名學(xué)生中隨機抽取部分學(xué)生進行測試,并將測試成績(百分制,得分均為整數(shù))進行統(tǒng)計分析,繪制了如下不完整的頻數(shù)表和頻數(shù)直方圖.
被抽取的部分學(xué)生安全知識測試成績頻數(shù)表
組別 | 成績(分) | 頻數(shù)(人) | 頻率 |
組 | |||
組 | |||
組 | |||
組 | |||
組 |
由圖表中給出的信息回答下列問題:
表中的 ;抽取部分學(xué)生的成績的中位數(shù)在 組;
把上面的頻數(shù)直方圖補充完整;
如果成績達到分以上(包括分)為優(yōu)秀,請估計該校名學(xué)生中成績優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小方設(shè)計的“作一個30°角”的尺規(guī)作圖過程.
已知:直線AB及直線AB外一點P.
求作:直線AB上一點C,使得∠PCB=30°.
作法:
①在直線AB上取一點M;
②以點P為圓心,PM為半徑畫弧,與直線AB交于點M、N;
③分別以M、N為圓心,PM為半徑畫弧,在直線AB下方兩弧交于點Q.
④連接PQ,交AB于點O.
⑤以點P為圓心,PQ為半徑畫弧,交直線AB于點C且點C在點O的左側(cè).則∠PCB就是所求作的角.
根據(jù)小方設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī)補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵PM=PN=QM=QN,
∴四邊形PMQN是 .
∴PQ⊥MN,PQ=2PO( ).(填寫推理依據(jù))
∵在Rt△POC中,sin∠PCB== (填寫數(shù)值)
∴∠PCB=30°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=120°,點P為射線OA上一動點(不與點O重合),點C為∠AOB內(nèi)部一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,且點Q恰好落在射線OB上,不與點O重合.
(1)依據(jù)題意補全圖1;
(2)用等式表示∠CPO與∠CQO的數(shù)量關(guān)系,并證明;
(3)連接OC,寫出一個OC的值,使得對于任意點P,總有OP+OQ=4,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, .在同一平面內(nèi),內(nèi)部一點到的距離都等于(為常數(shù)),到點的距離等于的所有點組成圖形.
(1)直接寫出的值;
(2)連接并延長,交于點,過點作于點.
①求證:;
②求直線與圖形的公共點個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標(biāo)情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:
收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補充完整:
范圍 | |||||||
人數(shù) |
(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)
(2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:
平均數(shù) | 中位數(shù) | 滿分率 |
46.8 | 47.5 |
得出結(jié)論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù);
②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績?nèi)缦拢?/span>
平均數(shù) | 中位數(shù) | 滿分率 |
45.3 | 49 |
請你結(jié)合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標(biāo)情況做一下評估.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(m﹣2)x2+2mx+m﹣3的圖象與x軸有兩個交點,(x1,0),(x2,0),則下列說法正確是( )
①該函數(shù)圖象一定過定點(﹣1,﹣5);
②若該函數(shù)圖象開口向下,則m的取值范圍為:m<2;
③當(dāng)m>2,且1≤x≤2時,y的最大值為:4m﹣5;
④當(dāng)m>2,且該函數(shù)圖象與x軸兩交點的橫坐標(biāo)x1,x2滿足﹣3<x1<﹣2,﹣1<x2<0時,m的取值范圍為:m<11.
A.①②③④B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點 A(2,m),B(2,m-5)在平面直角坐標(biāo)系中,點O為坐標(biāo)原點.若△ABO是直角三角形,則m的值不可能是( )
A.4B.2C.1D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對稱軸是直線,與x軸相交于A,B兩點(點B在點A右側(cè)),與y軸交于點C.
(1)求拋物線的解析式和A,B兩點的坐標(biāo);
(2)如圖1,若點P是拋物線上B,C兩點之間的一個動點(不與B,C重合),是否存在點P,使四邊形PBOC的面積最大?若存在,求點P的坐標(biāo)及四邊形PBOC面積的最大值;若不存在,請說明理由;
(3)如圖2,若點M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當(dāng)MN=3時,求點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com