【題目】如圖,ABC中,EAC上一點(diǎn),且AE=AB,∠BAC=2EBC ,以AB為直徑的⊙OAC于點(diǎn)D,交EB于點(diǎn)F

1)求證:BC與⊙O相切;

2)若AB=8,BE=4,求BC的長.

【答案】1)證明見解析;(2BC=

【解析】

1)運(yùn)用切線的判定,只需要證明ABBC即可,即證∠ABC=90°. 連接AF,依據(jù)直徑所對圓周角為90度,可以得到∠AFB=90°,依據(jù)三線合一可以得到2BAF=BAC,再結(jié)合已知條件進(jìn)行等量代換可得∠BAF=EBC,最后運(yùn)用直角三角形兩銳角互余及等量代換即可.

2)依據(jù)三線合一可以得到BF的長度,繼而算出∠BAF=EBC的正弦值,過EEG⊥BC于點(diǎn)G,利用三角函數(shù)可以解除EG的值,依據(jù)垂直于同一直線的兩直線平行,可得EGAB平行,從而得到相似三角形,依據(jù)相似三角形的性質(zhì)可以求出AC的長度,最后運(yùn)用勾股定理求出BC的長度.

1)證明:連接AF

AB為直徑, ∴∠AFB=90°

又∵AE=AB,

∴2∠BAF=BAC,∠FAB+FBA=90°

又∵∠BAC=2EBC,

∴∠BAF=EBC

∴∠FAB+FBA=EBC+FBA=90°

∴∠ABC=90°.即ABBC,

BC與⊙O相切;

2)解:過EEGBC于點(diǎn)G

AB=AE,∠AFB=90°,

BF=BE=×4=2,

sinBAF=,

又∵∠BAF=EBC,

sinEBC=

又∵在EGB中,∠EGB=90°

EG=BEsinEBC=4×=1

EGBC,ABBC

EGAB,

∴△CEG∽△CAB

CE=,

AC=AE+CE=8+=

RtABC中,

BC=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李經(jīng)營的車飾店銷售某品牌車漆修復(fù)液,已知其進(jìn)價為40/支,試銷階段發(fā)現(xiàn)將售價定為80/支時,每天可銷售20支,后來為了擴(kuò)大銷售量,小李適當(dāng)降低了售價,銷售量y(支)與降價x(元)的關(guān)系如圖所示.

1)請仔細(xì)讀題,并補(bǔ)全下面表格:

降價x/

2

4

   

x

銷量y/

24

28

30

   

2)若要使得平均每天銷售這種修復(fù)液的利潤W最大,則每支修復(fù)液應(yīng)該降價多少元?最大的利潤W為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸、軸分別交于兩點(diǎn),拋物線經(jīng)過、兩點(diǎn),與軸的另一個交點(diǎn)為,且.

1)求拋物線的解析式;

2)點(diǎn)上,點(diǎn)的延長線上,且,連接于點(diǎn),點(diǎn)為第一象限內(nèi)的一點(diǎn),當(dāng)是以為斜邊的等腰直角三角形時,連接,設(shè)的長度為,的面積為,請用含的式子表示,并寫出自變量的取值范圍;

3)在(2)的條件下,連接、,將沿翻折到的位置(對應(yīng)),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,取格點(diǎn)AB、C并連接AB,BC.取格點(diǎn)DE并連接,交AB于點(diǎn)F

(Ⅰ)AB的長等于_____;

(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CGFG,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,確定點(diǎn)G的位置,并簡要說明點(diǎn)G的位置是如何找到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A-2,m),B2,m),C3mn)(n0)在同一個函數(shù)的圖象上,這個函數(shù)可能是(  )

A.yxB.y=﹣C.yx2D.y=﹣x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,ABC 中,AC=BC,∠ACB=90°.請用直角三角尺(僅可畫直角或直線)在圖中畫出一個點(diǎn)P,使得∠APB=45°

2)如圖2,ABC 中,AB=a,∠ACB=,請用直尺和圓規(guī)作出一個點(diǎn)Q,使點(diǎn)Q與點(diǎn)CAB同側(cè),QA=QB,∠AQB=;(不寫作法,保留作圖痕跡)

3)如圖3,若 AC=BC=,∠ACB=90°,以點(diǎn)A為原點(diǎn),直線AB x 軸,過點(diǎn)A垂直于AB的直線為 y 軸,建立平面直角坐標(biāo)系,直線y= - x+b(b>0) x 軸于點(diǎn)M,交 y 軸于點(diǎn)N.當(dāng)點(diǎn)P在直線MN上,且∠APB=45°,求點(diǎn)P的個數(shù)及對應(yīng)的b的取值范圍;

4)如圖4,ABC 中,AB=a,∠ACB=,請用直尺和圓規(guī)作出點(diǎn)P,使得∠APB=AP+BP最大,請簡要說明理由.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,經(jīng)過(﹣1,0)、(3,0)、(0,﹣3).

1)求二次函數(shù)的解析式;

2)不等式ax2+bx+c0的解集為   ;

3)方程ax2+bx+cm有兩個實(shí)數(shù)根,m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知,求一次函數(shù)所經(jīng)過的象限;

2)已知相似,且的三邊長分別為6、8、4,其中一邊長為2,試求的另外兩邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),且,點(diǎn)是邊的中點(diǎn),連接,.

1)如圖1,若點(diǎn),三點(diǎn)共線,則的數(shù)量關(guān)系是______

2)如圖2,若點(diǎn),三點(diǎn)不共線,問(1)中的結(jié)論還成立嗎?若成立,請給出證明,若不成立,請說明理由;

3)如圖3,若,,直接寫出的長是______.

查看答案和解析>>

同步練習(xí)冊答案