△ABC內(nèi)接于⊙O,∠ACB=36°,那么∠AOB的度數(shù)為 ________.

72°
分析:根據(jù)圓周角定理直接解答即可.
解答:∵△ABC內(nèi)接于⊙O,
∴∠ACB是所對的圓周角,∠AOB是所對的圓心角,
∴∠AOB=2∠ACB=2×36°=72°.
故答案為:72°.
點(diǎn)評:本題考查的是圓周角定理,即同弧所對的圓周角等于所對圓心角的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,PA是過A點(diǎn)的直線,∠PAC=∠B,
(1)求證:PA是⊙O的切線;
(2)如果弦CD交AB于E,CD的延長線交PA于F,AC=8,CE:ED=6:5,AE:EB=2:3,求AB的長和∠ECB的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•和平區(qū)一模)如圖,△ABC內(nèi)接于⊙O,AD是∠ABC的平分線,交BC于點(diǎn)M,交⊙O于點(diǎn)D.則圖中相似三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,∠BAC=60°,AD⊥BC于D,BE⊥AC交AD于H,若CF是⊙O的直徑.
(1)求∠FCB的度數(shù);
(2)求證:AH=
12
CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,點(diǎn)P在弧AC上移動(點(diǎn)P不與點(diǎn)A、C重合),若∠B=40°,則α的變化范圍是
0°<α<80°
0°<α<80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若△ABC內(nèi)接于⊙O,BC=12cm,O點(diǎn)到BC的距離為8cm,則⊙O的周長為
20πcm
20πcm

查看答案和解析>>

同步練習(xí)冊答案