如圖,在平行四邊形ABCD中,分別為邊的中點,連接.
(1)求證:.
(2)若,則四邊形是什么特殊四邊形?請證明你的結(jié)論.
解:(1)在平行四邊形ABCD中,∠A=∠C,AD=CB,AB=CD.
∵E,F(xiàn)分別為AB,CD的中點
∴AE=CF
在和中,
.
(2)若AD⊥BD,則四邊形BFDE是菱形.
證明:∵,
是,且是斜邊(或)
∵是的中點,
.
由題意可知且,
四邊形是平行四邊形,
四邊形是菱形.
【解析】(1)根據(jù)題中已知條件不難得出,AD=BC,∠A=∠C,E、F分別為邊AB、CD的中點,那么AE=CF,這樣就具備了全等三角形判定中的SAS,由此可得出△AED≌△CFB.
(2)直角三角形ADB中,DE是斜邊上的中線,因此DE=BE,又由DE=BF,F(xiàn)D∥BE那么可得出四邊形BFDE是個菱形.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
3 |
5 |
A、AC⊥BD |
B、四邊形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com