【題目】(本題12分)如圖1,在平面直角坐標(biāo)系中,四邊形OABC各頂點的坐標(biāo)分別O(0,0),A(3, ),B(9,5 ),C(14,0).動點P與Q同時從O點出發(fā),運(yùn)動時間為t秒,點P沿OC方向以1單位長度/秒的速度向點C運(yùn)動,點Q沿折線OAABBC運(yùn)動,在OA,AB,BC上運(yùn)動的速度分別為3, , (單位長度/秒)﹒當(dāng)P,Q中的一點到達(dá)C點時,兩點同時停止運(yùn)動.
(1)求AB所在直線的函數(shù)表達(dá)式.
(2)如圖2,當(dāng)點Q在AB上運(yùn)動時,求△CPQ的面積S關(guān)于t的函數(shù)表達(dá)式及S的最大值.
(3)在P,Q的運(yùn)動過程中,若線段PQ的垂直平分線經(jīng)過四邊形OABC的頂點,求相應(yīng)的t值.
【答案】
(1)
解:把A(3,3 ),B(9,5 )代入y=kx+b,
得 ;解得: ;
∴y= x+2 ;
(2)
解:在△PQC中,PC=14-t,PC邊上的高線長為 ;
∴
∴當(dāng)t=5時,S有最大值;最大值為 .
(3)
解: a.當(dāng)0<t≤2時,線段PQ的中垂線經(jīng)過點C(如圖1);
可得方程
解得:,(舍去),此時t=.
b.當(dāng)2<t≤6時,線段PQ的中垂線經(jīng)過點A(如圖2)
可得方程,
解得:;(舍去),此時;
c.當(dāng)6<t≤10時,
①線段PQ的中垂線經(jīng)過點C(如圖3)
可得方程14-t=25-;
解得:t=.
②線段PQ的中垂線經(jīng)過點B(如圖4)
可得方程;
解得,(舍去);
此時;
綜上所述:t的值為,,,.
【解析】(1)用待定系數(shù)法求直線AB方程即可。
(2)根據(jù)三角形的面積公式得到關(guān)于t的二次三項式,再由二次函數(shù)圖像的性質(zhì)求出S的最大值即可。
(3)根據(jù)t的值分情況討論,依題意列出不同的方程從而求出t的值。
【考點精析】利用確定一次函數(shù)的表達(dá)式和二次函數(shù)的最值對題目進(jìn)行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知已知拋物線 與x軸交于點 和點 ,與y軸交于點C,且 .
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標(biāo);
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉(zhuǎn)90°后,點A的對應(yīng)點A′恰好也落在此拋物線上,求點P的坐標(biāo).
(4)連AC,H是拋物線上一動點,過點H作AC的平行線交x軸于點F,是否這樣的點F,使得以A,C,H,F為頂點的四邊形是平行四邊形?若存在,直接寫出滿足條件的點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的關(guān)系是___;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在下列表格中填上相應(yīng)的值
x | … | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | … |
… | -1 | -2 | 3 | 1 | … |
(2)若將上表中的變量用y來代替(即有),請以表中的的值為點的坐標(biāo), 在下方的平面直角坐標(biāo)系描出相應(yīng)的點,并用平滑曲線順次連接各點
(3)在(2)的條件下,可將y看作是x的函數(shù) ,請你結(jié)合你所畫的圖像,寫出該函數(shù)圖像的兩個性質(zhì) :__________________________________________________.
(4)結(jié)合圖像,借助之前所學(xué)的函數(shù)知識,直接寫出不等式的解集: ____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.
(1)以景區(qū)大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.
(2)A景區(qū)與C景區(qū)之間的距離是多少?
(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充足電而途中不充電的情況下完成此次任務(wù)?請計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點之間的距離等于相對應(yīng)的兩數(shù)差的絕對值.
(1)數(shù)軸上表示2和5的兩點之間的距離是___________;數(shù)軸上表示﹣2和﹣8的兩點之間的距離是___________;
(2)數(shù)軸上表示數(shù)x和﹣1的兩點之間的距離是2,那么x為_____________;
(3)若某動點表示的數(shù)為x,當(dāng)式子|x+1|+|x﹣2|取得最小值時,相應(yīng)的x的范圍是________.
(4)若某動點表示的數(shù)為x,已知數(shù)軸上兩點對應(yīng)的數(shù)分別為、3,點為點A點B之間的一點(不與A,B重合),點對應(yīng)的數(shù)為p。則式子|x﹣p|+|x﹣3|+|x﹣P﹣15|的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+ x+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運(yùn)動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖拼接:含角的三角尺的長直角邊與含角的三角尺的斜邊恰好重合已知是AC上的一個動點.
當(dāng)點P運(yùn)動到的平分線上時,連接DP,求DP的長;
當(dāng)點P在運(yùn)動過程中出現(xiàn)時,求此時的度數(shù);
當(dāng)點P運(yùn)動到什么位置時,以為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時DPBQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)
(3)(y-1)2+2y(1-y)=0.(因式分解法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com