【題目】一次函數(shù)的圖象經(jīng)過點(diǎn)(-3,-2).
(1)求這個函數(shù)表達(dá)式;
(2)判斷(-5,3)是否在這個函數(shù)的圖象上.
(3)點(diǎn)M在直線y=kx+4上且到y軸的距離是3,求點(diǎn)M的坐標(biāo).
【答案】(1)y=2x+4;(2)不在;(3)(3,10)或(-3,-2)
【解析】
(1)把已知點(diǎn)的坐標(biāo)代入y=kx+4,則可得到k的一次方程,然后解方程求出k即可得到函數(shù)解析式;
(2)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行判斷;
(3)利用點(diǎn)M到y軸的距離是3得到M點(diǎn)的橫坐標(biāo)為3或-3,然后計(jì)算對應(yīng)的函數(shù)值即可得到M點(diǎn)坐標(biāo).
解:(1)把(-3,-2)代入y=kz+b得-3k+4=-2,解得k=2,
所以函數(shù)解析式為y=2x+4;
(2)當(dāng)x=-5時,y=2x+4=2(-5)+4=-6,
所以點(diǎn)(-5,3)不在這個函數(shù)的圖象上;
(3)當(dāng)x=3時,y=2x+4=10,此時M點(diǎn)坐標(biāo)為(3,10);
當(dāng)x=-3時,y=2x+4=-2,此時M點(diǎn)坐標(biāo)為(-3,-2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB>BC,AB=AC,DE 是 AB 的垂直平分線,垂足為 D,交 AC 于 E.
(1)若∠ABE=40°,求∠EBC 的度數(shù);
(2)若△ABC 的周長為 41cm,一邊長為 15cm,求△BCE 的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正五邊形廣場 的邊長為 米,甲、乙兩個同學(xué)做游戲,分別從 、 兩點(diǎn)處同時出發(fā),沿 的方向繞廣場行走,甲的速度為 ,乙的速度為 ,則兩人第一次剛走到同一條邊上時( )
A. 甲在頂點(diǎn) 處 B. 甲在頂點(diǎn) 處 C. 甲在頂點(diǎn)處 D. 甲在頂點(diǎn)處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點(diǎn)P在邊AB上運(yùn)動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為: ;
(3)若點(diǎn)P運(yùn)動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
(4)若點(diǎn)P運(yùn)動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),現(xiàn)把一條長為2 018個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2+4ax+b經(jīng)過A.C兩點(diǎn),且與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)若點(diǎn)Q在拋物線上,且△AQC與△BQC面積相等,求點(diǎn)Q的坐標(biāo);
(3)如圖2,P為△AOC外接圓上弧ACO的中點(diǎn),直線PC交x軸于點(diǎn)D,∠EDF=∠ACO,當(dāng)∠EDF繞點(diǎn)D旋轉(zhuǎn)時,DE交直線AC于點(diǎn)M,DF交y軸負(fù)半軸于點(diǎn)N.請你探究:CN﹣CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com