如圖,在Rt中,,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于E.
(1)求證:點E是邊BC的中點;
(2)求證:;
(3)當(dāng)以點O、D、E、C為頂點的四邊形是正方形時,求證:△ABC是等腰直角三角形.
.(1)證明見解析
(2)證明見解析
(3)證明見解析

試題分析:(1)由AC是直徑,可得∠ADC=90°,從而可得∠BDC=90°,若要證明點E是BC邊的中點,只需證明DE=CE=BE即可,由已知、切線的性質(zhì)以及圓的性質(zhì)就可以得到了;
由∠BDC=∠ACB,∠B=∠B可得△ABC∽△CDB,利用對應(yīng)邊成比例就可得到
當(dāng)以點O、D、E、C為頂點的四邊形是正方形時,可知∠OCD=45°,由AC是直徑可得∠ADC=90°,從而得出∠A=45°繼而得出△ABC是等腰直角三角形.

試題解析:(1)如圖,連接OD.∵DE為切線,∴∠EDC+∠ODC=90°;
∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,
∴∠EDC=∠ECD,∴ED=EC;∵AC為直徑,∴∠ADC=90°,
∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.
∴EB=EC,即點E為邊BC的中點;
(2)∵AC為直徑,∴∠ADC=∠ACB=90°,又∵∠B=∠B
∴△ABC∽△CDB,∴,∴BC2=BD•BA;
(3)當(dāng)四邊形ODEC為正方形時,∠OCD=45°;∵AC為直徑,
∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°
∴Rt△ABC為等腰直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點C,D是半圓O的三等分點,過點C作⊙O的切線交AD的延長線于點E,過點D作DF⊥AB于點F,交⊙O于點H,連接DC,AC.
(1)求證:∠AEC=90°;
(2)試判斷以點A,O,C,D為頂點的四邊形的形狀,并說明理由;
(3)若DC=2,求DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在半徑為2的圓中,弦AC長為1,M為AC中點,過M點最長的弦為BD,則四邊形ABCD的面積為                 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD為平行四邊形,以CD為直徑作⊙O,⊙O與邊BC相交于點F,⊙O的切線DE與邊AB相交于點E,且AE=3EB.
(1)求證:△ADE∽△CDF;
(2)當(dāng)CF:FB=1:2時,求⊙O與ABCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上的一點,過點A作AD⊥CD于點D,交⊙O于點E,且=
(1)求證:CD是⊙O的切線;
(2)若tan∠CAB=,BC=3,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

明明家打算在一塊長為16米,寬為4米的矩形土地上搭建一個截面為半圓形的全封閉蔬菜棚,并全部蓋上塑料薄膜(如圖所示),則所需薄膜的面積至少為______平方米.(結(jié)果可含π,不考慮埋入土中部分的面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點稱為格點.已知一個圓的圓心在原點,半徑等于5,那么這個圓上的格點有______個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,對角線BD的長為.若將BD繞點B旋轉(zhuǎn)后,點D落在BC延長線上的點D′處,點D經(jīng)過的路徑為,則圖中陰影部分的面積是(  )
A.﹣1B.C.D.π﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是一個圓錐的主視圖,則該圓錐的側(cè)面積是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案