【題目】如圖,在ABCD中,∠ABC、∠ADC的平分線分別交AD、BC于點(diǎn)E、F,求證:四邊形BEDF是平行四邊形.
【答案】見解析
【解析】
根據(jù)平行四邊形的性質(zhì)得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根據(jù)角平分線的定義求出∠ADF=∠EBC,求出∠AEB=∠ADF,根據(jù)平行線的判定得出BE∥DF,根據(jù)平行四邊形的判定得出即可.
∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC,AD∥BC,
∴DE∥BF,∠EBC=∠AEB,
∵∠ABC、∠ADC的平分線分別交AD、BC于點(diǎn)E、F,
∴∠ADF=ADC,∠EBC=ABC,
∴∠ADF=∠EBC,
∴∠AEB=∠ADF,
∴BE∥DF,
∵DE∥BF,
∴四邊形BEDF是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10(AB>AD),AD與BC之間的距離為6,點(diǎn)E在線段AB上移動(dòng),以E為圓心,AE長為半徑作⊙E.
(1)如圖1,若E是AB的中點(diǎn),求⊙E在AD所在的直線上截得的弦長;
(2)如圖2,若⊙E與BC所在的直線相切,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+3x+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過點(diǎn)P向x軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長為m,求m與t之間的函數(shù)關(guān)系式,并求出m的最大值;
(3)在x軸上是否存在點(diǎn)E,使以點(diǎn)B,C,E為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫出E點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍是,下表是y與x的幾組對應(yīng)值.
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請將其補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各組對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①時(shí),對應(yīng)的函數(shù)值y約為 (結(jié)果精確到0.01);
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動(dòng)中,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票原定的票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對于個(gè)人購票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)讀讀做做:教材中有這樣的問題,觀察下面的式子,探索它們的規(guī)律,=1-,=,=……用正整數(shù)n表示這個(gè)規(guī)律是______;
(2)問題解決:一容器裝有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照這種倒水方式,這1L水能否倒完?
(3)拓展探究:①解方程:+++=;
②化簡:++…+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)
為了考察甲、乙兩種成熟期小麥的株高長勢狀況,現(xiàn)從中各隨機(jī)抽取6株,并測得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(1)請分別計(jì)算表內(nèi)兩組數(shù)據(jù)的方差,并借此比較哪種小麥的株高長勢比較整齊?
(2)現(xiàn)將進(jìn)行兩種小麥優(yōu)良品種雜交試驗(yàn),需從表內(nèi)的甲、乙兩種小麥中,各隨機(jī)抽取一株進(jìn)行配對,以預(yù)估整體配對狀況.請你用列表法或畫樹狀圖的方法,求所抽取的兩株配對小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+n(k≠0)與二次函數(shù)y2=ax2+bx+c(a≠0)的圖象相交于A(﹣1,5)、B(9,2)兩點(diǎn),則關(guān)于x的不等式kx+n≥ax2+bx+c的解集為( 。
A. ﹣1≤x≤9 B. ﹣1≤x<9 C. ﹣1<x≤9 D. x≤﹣1或x≥9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O的直徑AB的長為10,弦AC的長為5,∠ACB的平分線交O于點(diǎn)D.
(1)求∠ADC的度數(shù);
(2)求弦BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com