【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點(diǎn)作圖的切線。
已知:P為圓O外一點(diǎn)。
求作:經(jīng)過點(diǎn)P的圓O的切線。

小敏的作法如下:
①連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
②以點(diǎn)C為圓心,CO的長為半徑作圓交圓O于A、B兩點(diǎn);
③作直線PA、PB,所以直線PA、PB就是所求作的切線。

老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

【答案】直徑所對的圓周角是直角;經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線
【解析】解:∵OP是⊙O的直徑,
∴∠OAP=∠OBP=90°.
∴直線PA,PB都是⊙O的切線.
所以答案是:直徑所對的圓周角是直角;經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相較于點(diǎn)F

1)求證:四邊形BDFC是平行四邊形;

2)若△BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1)x2﹣2x﹣8=0;
(2)3x(x﹣1)=2(x﹣1);
(3)x2+3=3(x+1);
(4)2x(4x+5)=7;
(5)4x2﹣8x+1=0;
(6)(y+2)2=(3y﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+4x+3交x軸于A、B兩點(diǎn),(A在B左側(cè)),交y軸于點(diǎn)C.

(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)求拋物線的對稱軸及頂點(diǎn)坐標(biāo).
(3)拋物線上是否存在點(diǎn)F,使△ABF的面積為1?若存在,求F點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O上有兩點(diǎn)A與P,且OA⊥OP,若A點(diǎn)固定不動,P點(diǎn)在圓上勻速運(yùn)動一周,那么弦AP的長度d與時間t的函數(shù)關(guān)系的圖象可能是( )


A.①
B.③
C.①或③
D.②或④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的科學(xué)素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為,,四個等級,其中相應(yīng)等級的得分依次記為分,分,分,分,學(xué)校將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖:

請你根據(jù)以上提供的信息解答下列問題:

(1)此次競賽中二班成績在分及其以上的人數(shù)有________人;

(2)補(bǔ)全下表中空缺的三個統(tǒng)計量:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

________

二班

________

________

(3)請根據(jù)上述圖表對這次競賽成績進(jìn)行分析,寫出兩個結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,a,b滿足.

(1)點(diǎn)A表示的數(shù)為________,點(diǎn)B表示的數(shù)為________;

(2)設(shè)點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.若在數(shù)軸上存在一點(diǎn)C,使BC=2AC,則點(diǎn)C表示的數(shù)為__________;

(3)若在原點(diǎn)處放一擋板,一小球甲從點(diǎn)A處以每秒2個單位長度的速度向左運(yùn)動;同時另一小球乙從點(diǎn)B以每秒2個單位長度的速度也向左運(yùn)動,在碰到擋板后(忽略球的大小,可看做一點(diǎn))以原來速度的兩倍向相反的方向運(yùn)動.設(shè)運(yùn)動的時間為t秒,請用含t的代數(shù)式分別表示出甲、乙兩小球到原點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點(diǎn).

(1)求BC的長;
(2)過點(diǎn)D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn),PEBC,PFCD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個結(jié)論

AP=EF;②∠PFE=BAP;PD=EC;④△APD一定是等腰三角形.

其中正確的結(jié)論有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案