【題目】如圖,□ABCD的對角線交于點O,點E在邊BC的延長線上,且OE=OB,連接DE.
(1)求證:△BDE是直角三角形;
(2)如果OE⊥CD,試判斷△BDE與△DCE是否相似,并說明理由.
【答案】(1)證明見解析;(2)相似,理由見解析.
【解析】試題分析:(1)由平行四邊形ABCD 對角線互相平分、已知條件OE=OB以及等邊對等角推知∠BED=∠OEB+∠OED=90°,則DE⊥BE,即△BDE是直角三角形;
(2)利用兩角法證得△BDE與△DCE相似.
證明:(1)∵四邊形ABCD是平行四邊形,
∴OB=OD,
∵OE=OB, ∴OE=OD,
∴∠OBE=∠OEB,∠ODE=∠OED,
∵∠OBE+∠OEB+∠ODE+∠OED=180°,
∴∠BED=∠OEB+∠OED=90°,
∴DE⊥BE,即△BDE是直角三角形;
(2)△BDE與△DCE相似.
理由如下:
∵OE⊥CD,
∴∠CEO+∠DCE=∠CDE+∠DCE=90°,
∴∠CEO=∠CDE,
∵∠OBE=∠OEB,
∴∠DBE=∠CDE,
∵∠BED=∠DEC=90°,
∴△BDE∽△DCE.
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)表格估計一元二次方程x2+2x﹣4=0的一個解的范圍在( )
x | ﹣1 | 0 | 1 | 2 | 3 |
x2+2x﹣4 | ﹣5 | ﹣4 | ﹣1 | 4 | 11 |
A.﹣1<x<0
B.0<x<1
C.1<x<2
D.2<x<3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D為∠ABC的平分線BD上一點,連接AD,過點D作EF∥BC交AB于點E,交AC于點F.
(1)如圖1,若AD⊥BD于點D,∠BEF=130°,求∠BAD的度數(shù);
(2)如圖2,若∠ABC=α,∠BDA=β,求∠FAD+∠C的度數(shù)(用含α和β的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,動點P從C出發(fā)沿CA方向,以每秒1個單位長度的速度向A點勻速運動,到達A點后立即以原來速度沿AC返回;同時動點Q從點A出發(fā)沿AB以每秒1個單位長度向點B勻速運動,當Q到達B時,P、Q兩點同時停止運動.設P、Q運動的時間為t秒(t>0).
(1)當t為何值時,PQ∥CB?
(2)在點P從C向A運動的過程中,在CB上是否存在點E使△CEP與△PQA全等?若存在,求出CE的長;若不存在,請說明理由;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB﹣BC﹣CP于點F.當DF經(jīng)過點C時,求出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件為必然事件的是( ).
A.畫一個四邊形,其內(nèi)角為180°
B.用長度分別是4,6,9的三條線段能圍成一個三角形
C.NBA球員庫里罰籃兩罰全中
D.在200個白球中放入1個紅球,搖勻后隨機摸出1球就摸出了紅球
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如3=22-12,16=52-32,則3和16是智慧數(shù)).已知按從小到大的順序構成如下數(shù)列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…則第2 013個“智慧數(shù)”是______.
【答案】2 687
【解析】解析:觀察數(shù)的變化規(guī)律,可知全部“智慧數(shù)”從小到大可按每三個數(shù)分一組,從第2組開始每組的第一個數(shù)都是4的倍數(shù),歸納可得,第n組的第一個數(shù)為4n(n≥2).因為2 013÷3=671,所以第2 013個“智慧數(shù)”是第671組中的第3個數(shù),即為4×671+3=2 687.
點睛:找規(guī)律題需要記憶常見數(shù)列
1,2,3,4……n
1,3,5,7……2n-1
2,4,6,8……2n
2,4,8,16,32……
1,4,9,16,25……
2,6,12,20……n(n+1)
一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.
【題型】填空題
【結束】
19
【題目】如圖,鄭某把一塊邊長為a m的正方形的土地租給李某種植,他對李某說:“我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒有吃虧,你看如何”.李某一聽,覺得自己好像沒有吃虧,就答應了.同學們,你們覺得李某有沒有吃虧?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com