【題目】如圖,在△PAB中,∠APB=120°,M,N是AB上兩點(diǎn),且△PMN是等邊三角形,求證:BMPA=PNBP.
【答案】證明:∵△PMN為等邊三角形, ∴∠PMN=∠PNM=∠MPN=60°,
∴∠BMP=∠PNA=120°.
∵∠BPA=120°,
∴∠BPM+∠APN=60°.
在△BMP中,∠B+∠BPM=60°,
∴∠B=∠NPA,
∴△BMP∽△PNA,
∴ ,
∴BMPA=PNBP
【解析】根據(jù)所證的條件分析,本題需要證明△BMP∽△PNA求解;通過(guò)證明∠B=∠APN,∠BPM=∠A,即可得出△BMP和△PNA相似.解題時(shí)要注意選擇適宜的判定定理.
【考點(diǎn)精析】本題主要考查了等邊三角形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為祝賀北京成功獲得2022年冬奧會(huì)主辦權(quán),某工藝品廠準(zhǔn)備生產(chǎn)紀(jì)念北京申辦冬奧會(huì)成功的“紀(jì)念章”和“冬奧印”.生產(chǎn)一枚“紀(jì)念章”需要用甲種原料4盒,乙種原料3盒;生產(chǎn)一枚“冬奧印”需要用甲種原料5 盒,乙種原料10 盒.該廠購(gòu)進(jìn)甲、乙兩種原料分別為20000盒和30000盒,如果將所購(gòu)進(jìn)原料正好全部都用完,那么能生產(chǎn)“紀(jì)念章”和“冬奧印”各多少枚?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平面直角坐標(biāo)系中的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
(1)若動(dòng)點(diǎn)P從坐標(biāo)點(diǎn)M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點(diǎn)N的坐標(biāo)為 , 點(diǎn)G的坐標(biāo)為 .
(2)若動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)出發(fā),先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到點(diǎn)O.當(dāng)△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時(shí),請(qǐng)你直接寫出“平移量”m , n , q .
(3)在(1)、(2)的前提下,請(qǐng)你在平面直角坐標(biāo)系中畫出△OBC與△MNG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某拋物線的對(duì)稱軸為直線x=2,點(diǎn)E是該拋物線頂點(diǎn),拋物線與y軸交于點(diǎn)C,過(guò)點(diǎn)C作CD∥x軸,與拋物線交于點(diǎn)B,與對(duì)稱軸交于點(diǎn)D,點(diǎn)A是對(duì)稱軸上一點(diǎn),連結(jié)AC、AB,若△ABC是等邊三角形,則圖中陰影部分圖形的面積之和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC , BD相交于點(diǎn)O , 且AC=6cm,BD=8cm,動(dòng)點(diǎn)P , Q分別從點(diǎn)B , D同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿B→C→D運(yùn)動(dòng),到點(diǎn)D停止,點(diǎn)Q沿D→O→B運(yùn)動(dòng),到點(diǎn)O停止1s后繼續(xù)運(yùn)動(dòng),到點(diǎn)B停止,連接AP , AQ , PQ . 設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)填空:AB=cm,AB與CD之間的距離為cm;
(2)當(dāng)4≤x≤10時(shí),求y與x之間的函數(shù)解析式;
(3)直接寫出在整個(gè)運(yùn)動(dòng)過(guò)程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始以2cm/秒的速度移動(dòng),點(diǎn)Q沿DA邊從D以1cm/秒的速度移動(dòng),若P、Q同時(shí)出發(fā),用t表示移動(dòng)時(shí)間(0≤t≤6),求當(dāng)t何值時(shí),△APQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣ x﹣ 與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2﹣ x+c(a≠0)經(jīng)過(guò)A,B,C三點(diǎn).
(1)求過(guò)A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問(wèn)題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問(wèn)題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是部,中位數(shù)是部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為度.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)沒(méi)有讀過(guò)四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來(lái)閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y= 在第一象限的圖象如圖所示,過(guò)點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)y= 的圖象于點(diǎn)M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個(gè)頂點(diǎn)在反比例函數(shù)y= 的圖象上,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com