【題目】如圖,在ABC中,D是邊AB上的動(dòng)點(diǎn),若在邊ACBC上分別有點(diǎn)E,F,使得

AEAD,BFBD

(1)設(shè)∠Cα,求∠EDF(用含α的代數(shù)式表示)

(2)尺規(guī)作圖:分別在邊AB,AC上確定點(diǎn)PQ(PQ不與DE平行或重合),使得

CPQ=∠EDF(保留作圖痕跡,不寫作法)

【答案】(1)∠EDF=90°-α;(2)如圖點(diǎn)P,Q即為所求見解析.

【解析】

(1)根據(jù)題中條件易知∠ADE=(180°-∠A),∠BDF=(180°-∠B)

再根據(jù)三角形內(nèi)角和為180°,所以∠EDF=90°-α

(2)作∠C的角平分線CP交AB于點(diǎn)P,過點(diǎn)P作AC的垂線,交AC于點(diǎn)Q.

(1)解:∵ AE=AD,

∴ ∠AED=∠ADE,

在△ADE中,

∠ADE=(180°-∠A).

同理可得∠BDF=(180°-∠B).

∴ ∠EDF=180°-∠ADE-∠BDF

=180°-(180°-∠A)-(180°-∠B)

(∠A+∠B).

在△ABC中,

∠A+∠B=180°-∠C=180°-α.

∴ ∠EDF=(180°-α)=90°-α.

(2)解:尺規(guī)作圖:如圖點(diǎn)P,Q即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)邊長為的正方形的中心在直線上,它的一組對邊垂直于直線,半徑為的圓的圓心在直線上運(yùn)動(dòng),兩點(diǎn)之間的距離為

)如圖①,當(dāng)時(shí),填表:

、之間的數(shù)量關(guān)系

與正方形的公共點(diǎn)個(gè)數(shù)

__________

__________

__________

)如圖②,與正方形有個(gè)公共點(diǎn)、、、,求此時(shí)之間的數(shù)量關(guān)系:

)由()可知,、之間的數(shù)量關(guān)系和⊙與正方形的公共點(diǎn)個(gè)數(shù)密切相關(guān).當(dāng)時(shí),請根據(jù)、之間的數(shù)量關(guān)系,判斷⊙與正方形的公共點(diǎn)個(gè)數(shù).

)當(dāng)之間滿足()中的數(shù)量關(guān)系時(shí),⊙與正方形的公共點(diǎn)個(gè)數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價(jià)各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6,購費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,過點(diǎn)C作CE⊥AB于點(diǎn)E,且CD=CB,∠ABC+∠ADC=180°.求證:AE=(AB+AD).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1,可以得到這個(gè)等式,請解答下列問題:

(1)寫出圖2中所表示的數(shù)學(xué)等式______________;(最后結(jié)果)

(2)根據(jù)整式乘法的運(yùn)算法則,通過計(jì)算驗(yàn)證上述等式;

(3)利用(1)中得到的結(jié)論,解決問題:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值;

(4)小明同學(xué)用圖3x張邊長為a的正方形,y張邊長為b的正方形,z張邊長分別為a、b的長方形紙片拼出一個(gè)面積為(5a+2b)(3a+5b)的長方形,求x+y+z的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班從三名男生(含小強(qiáng))和五名女生中選四名學(xué)生參加學(xué)校舉行的中華古詩文朗誦大賽,規(guī)定女生選n名.

1)當(dāng)n為何值時(shí),男生小強(qiáng)參加是確定事件?

2)當(dāng)n為何值時(shí),男生小強(qiáng)參加是隨機(jī)事件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB15cm,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后立即改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.

2)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),在PQ相遇前,若點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.

3)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),Q點(diǎn)與P點(diǎn)相遇后仍然繼續(xù)往A點(diǎn)的方向運(yùn)動(dòng)到A點(diǎn)后再返回,求整個(gè)運(yùn)動(dòng)過程中PQ6cm時(shí)t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時(shí),它是菱形 B. 當(dāng)ACBD時(shí),它是菱形

C. 當(dāng)∠ABC90°時(shí),它是矩形 D. 當(dāng)ACBD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去,則正方形AnBnCnDn的面積為________

查看答案和解析>>

同步練習(xí)冊答案