【題目】已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,
求證:①AC=BD;②∠APB=50°.
【答案】①證明見(jiàn)解析;②證明見(jiàn)解析.
【解析】①根據(jù)已知先證明∠AOC=∠BOD,再由SAS證明△AOC≌△BOD,所以AC=BD.②由△AOC≌△BOD,可得∠OAC=∠OBD,再結(jié)合圖形,利用角的和差,可得∠APB=50°.
證明:①∵∠AOB=∠COD=50°,
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOC=∠BOD.
在△AOC和△BOD中,
AO=BO,∠AOC=∠BOD,OC=OD,
∴△AOC≌△BOD(SAS),
∴AC=BD;
②∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+60°=∠OBD+∠APB,
∴∠APB=50°.
“點(diǎn)睛”本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理的應(yīng)用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將直線l1:y=-2x-2平移后,得到直線l2:y=-2x+4,則下列平移方法正確的是( )
A. 將l1向右平移3個(gè)單位長(zhǎng)度 B. 將l1向右平移6個(gè)單位長(zhǎng)度
C. 將l1向上平移2 個(gè)單位長(zhǎng)度 D. 將l1向上平移4個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.當(dāng)運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=3x﹣2的圖象上有兩點(diǎn)A(﹣1,y1),B(﹣2,y2),則y1與y2的大小關(guān)系為( )
A.y1<y2B.y1>y2C.y1=y2D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)中,互為相反數(shù)的是( )
A.﹣(﹣1)與1
B.(﹣1)2與1
C.|﹣1|與1
D.﹣12與1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲煤場(chǎng)有煤518噸,乙煤場(chǎng)有煤106噸,為了使甲煤場(chǎng)存煤是乙煤場(chǎng)的2倍,需要從甲煤場(chǎng)運(yùn)煤到乙煤場(chǎng),設(shè)從甲煤場(chǎng)運(yùn)煤x噸到乙煤場(chǎng),則可列方程為( )
A.518=2(106+x)
B.518﹣x=2×106
C.518﹣x=2(106+x)
D.518+x=2(106﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是書法小組某次測(cè)驗(yàn)的成績(jī)統(tǒng)計(jì)表.則成績(jī)的眾數(shù)是( )
成績(jī)/分 | 7 | 8 | 9 | 10 |
人數(shù)/人 | 4 | 3 | 2 | 1 |
A.1B.4C.7D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com