【題目】關于三角函數(shù)有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ
cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ
tan(α+β)=(1﹣tanαtanβ≠0)
tan(α﹣β)=(1+tanαtanβ≠0)
利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
如:tan105°=tan(45°+60°)=
根據(jù)上面的知識,你可以選擇適當?shù)墓浇鉀Q下面問題:
如圖,兩座建筑物AB和DC的水平距離BC為24米,從點A測得點D的俯角α=15°,測得點C的俯角β=75°,求建筑物CD的高度.
【答案】48m
【解析】試題分析:首先根據(jù)題目中給出的公式求出tan75°和tan15°的值,過A作AE⊥CD交CD延長線于E,根據(jù)Rt△AEC的三角形函數(shù)值得出CE的值,然后根據(jù)Rt△AED的三角形函數(shù)值得出DE的長度,最后根據(jù)CD=CE-DE得出答案.
試題解析:解:∵tan75°=tan(30°+45°)===2+,
tan15°=tan(45°﹣30°)==2﹣,
如圖,過A作AE⊥CD交CD延長線于E, 在Rt△AEC中,AE=BC=24m,∠CAE=75°,
∴tan75°=, ∴CE=AEtan75°=(48+24)m,
在Rt△AED中,tan∠DAE=tan15°=, ∴DE=AEtan15°=48﹣24m,
∴CD=CE﹣DE=48m.
答:建筑物CD的高度是48m.
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設甲乙兩人相距s(米),甲行走的時間為t(分),s關于t的函數(shù)圖象的一部分如圖所示.下列結論正確的個數(shù)是( 。
(1)t=5時,s=150;(2)t=35時,s=450;(3)甲的速度是30米/分;(4)t=12.5時,s=0.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點A在y軸正半軸上,頂點C在x軸正半軸上,拋物線(a<0)的頂點為D,且經(jīng)過點A、B.若△ABD為等腰直角三角形,則a的值為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,在平面直角坐標系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB繞O點旋轉180°得到△OA1B1,請畫出△OA1B1,并寫出A1,B1的坐標;
(2)判斷以A,B,A1,B1為頂點的四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,A點坐標是(1,3),B點坐標是(5,1),C點坐標是(1,1)
(1)求△ABC的面積是____;
(2)求直線AB的表達式;
(3)一次函數(shù)y=kx+2與線段AB有公共點,求k的取值范圍;
(4)y軸上有一點P且△ABP與△ABC面積相等,則P點坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】立定跳遠是體育中考選考項目之一,體育課上老師記錄了某同學的一組立定跳遠成績?nèi)绫恚?/span>
成績(m) | 2.3 | 2.4 | 2.5 | 2.4 | 2.4 |
則下列關于這組數(shù)據(jù)的說法,正確的是( 。
A.眾數(shù)是2.3B.平均數(shù)是2.4
C.中位數(shù)是2.5D.方差是0.01
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境
小明和小麗共同探究一道數(shù)學題:
如圖①,在△ABC中,點D是邊BC的中點,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長AD至點E,使DE=AD,構造全等三角形.
小麗的思路是:過點C作CE∥AB,交AD的延長線于點E,構造全等三角形.
選擇小明、小麗其中一人的方法解決問題情境中的問題.
類比應用
如圖②,在四邊形ABCD中,對角線AC、BD相交于點O,點O是BD的中點,
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年深圳市創(chuàng)建文明城市期間,某區(qū)教育局為了了解全區(qū)中學生對課外體育運動項目的喜歡程度,隨機抽取了某校八年級部分學生進行問卷調(diào)查(每人限選一種體育運動項目).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動一共調(diào)查了 名學生;
(2)在扇形統(tǒng)計圖中,“跳繩”所在扇形圓心角等于 度;
(3)補全條形統(tǒng)計圖;
(4)若該校有學生2000人, 請你估計該校喜歡“足球”的學生約有 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com