精英家教網 > 初中數學 > 題目詳情

【題目】在一個不透明的盒中有m個黑球和1個白球,這些球除顏色外無其他差別.

1)若每次將球充分攪勻后,任意摸出1個球記下顏色再放回盒子.通過大量重復試驗后,發(fā)現摸到黑球的頻率穩(wěn)定在0.75左右,則m的值應是   ;

2)在(1)的條件下,用m個黑球和1個白球進行摸球游戲.先從盒中隨機摸取一個球,再從剩下的球中再隨機摸取一個球,求事件“先摸到黑球,再摸到白球”的概率.

【答案】13;(2)見解析,.

【解析】

1)通過大量重復試驗發(fā)現摸到的黑球的頻率穩(wěn)定在0.75左右,可得黑球占小球總數的0.75即可求出答案

2)畫出樹狀圖,從樹狀圖可知,“先從盒中隨機摸取一個球,再從剩下的球中再隨機摸取一個球”共有12種等可能的結果,其中“先摸到黑球,再摸到白球”的結果有3種即可求出答案

解:(1)過大量重復試驗發(fā)現摸到的黑球的頻率穩(wěn)定在0.75左右,可得黑球占小球總數的0.75,故,解得m=3;故m的值應是3

2)畫出樹狀圖如下(列表法參照給分);

從樹狀圖可知,“先從盒中隨機摸取一個球,再從剩下的球中再隨機摸取一個球”共有12種等可能的結果,其中“先摸到黑球,再摸到白球”的結果有3種;

P(先摸到黑球,再摸到白球)==

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,一次函數y=kx+b與反比例函數y=的圖象交于A(2,4),B(﹣4,n)兩點.

(1)分別求出一次函數與反比例函數的表達式;

(2)過點BBCx軸,垂足為點C,連接AC,求ACB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是AC上兩點,且BEACE,DFACF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線軸、軸分別交于點和點上的一點,若將沿折疊,點恰好落在軸上的點處,則點的坐標為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線yx24x+nx0)的圖象記為G1,將G1繞坐標原點旋轉180°得到圖象G2,圖象G1G2合起來記為圖象G

1)若點P(﹣1,2)在圖象G上,求n的值.

2)當n=﹣1時.

①若Qt,1)在圖象G上,求t的值.

②當kx≤3k3)時,圖象G對應函數的最大值為5,最小值為﹣5,直接寫出k的取值范圍.

3)當以A(﹣3,3)、B(﹣3,﹣1)、C2,﹣1)、D2,3)為頂點的矩形ABCD的邊與圖象G有且只有三個公共點時,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為rr1),P是圓內與圓心C不重合的點,⊙C完美點的定義如下:若直線CP與⊙C交于點A,B,滿足|PAPB|=2,則稱點P為⊙C完美點,如圖為⊙C及其完美點”P的示意圖.

1)當⊙O的半徑為2時,

①在點M,N0,1),T中,⊙O完美點   ;

②若⊙O完美點”P在直線y=x上,求PO的長及點P的坐標;

2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C完美點,求圓心C的縱坐標t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形的頂點分別在坐標軸上,,點沿運動,連接,當為等腰三角形時,點的坐標為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A-6,0),B2,0),點C在直線上,則使ABC是直角三角形的點C的個數為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:

①∴,這與三角形內角和為矛盾,②因此假設不成立.∴,③假設在中,,④由,得,即.這四個步驟正確的順序應是( 。

A.③④②①B.③④①②C.①②③④D.④③①②

查看答案和解析>>

同步練習冊答案