(本題滿(mǎn)分10分)

如圖所示,在直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)坐標(biāo)B(6,3),C(2,3).

(1)求出過(guò)O、A、B三點(diǎn)的拋物線(xiàn)解析式;

(2)若直線(xiàn)恰好將平行四邊形OABC的面積分成相等的兩部分,試求b的值

 

(3)若軸、y軸的交點(diǎn)分別記為M、N,(1)中拋物線(xiàn)的對(duì)稱(chēng)軸與此拋物

 

線(xiàn)及軸的交點(diǎn)分別記作點(diǎn)D、點(diǎn)E,試判斷△OMN與△OED是否相似?

 

(1)如圖,分別過(guò)點(diǎn)C、B作CF⊥軸、BH⊥軸,垂足分別為點(diǎn)F、點(diǎn)H,

則四邊形CFHB為矩形,已知B(6,3),C(2,3),

則AH=OF=2,OH=6,可得OA=OH-AH=6-2=4.故點(diǎn)A的坐標(biāo)為(4,0).

設(shè)拋物線(xiàn)解析式為,由于拋物線(xiàn)過(guò)三點(diǎn)A(4,0),B(6,3),O(0,0)則有

解之得

 

故其解析式為…     …3分

(2)如圖,連接OB,取OB的中點(diǎn)P,作PQ⊥軸,則PQ=BH=,OQ=OH=3,

所以點(diǎn)P的坐標(biāo)為(3,)…………………………………………………4分

過(guò)點(diǎn)P的直線(xiàn)一定會(huì)平分平行四邊形OABC的面積,

因此直線(xiàn)過(guò)點(diǎn)P即可.………5分

故有=-×3+b,解之得b =3.……………………………………………6分

(3)答:它們相似.…………………………………………………………7分

易知M、N的坐標(biāo)分別為(6,0)、(0,3);

點(diǎn)D、點(diǎn)E的坐標(biāo)分別為(2,-1)、(2,0)                    …8分

可知線(xiàn)段OM=6,ON=3,OE=2,DE=1,  

在△OMN與△ODE中

又∠MON=∠OED,

∴△OMN∽△OED.                  ………………………10分

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分10分)

如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過(guò)點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.

(1)點(diǎn)B的坐標(biāo)為   ;用含t的式子表示點(diǎn)P的坐標(biāo)為     ;(3分)

(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時(shí),S有最大值?(4分)

(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線(xiàn)MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分10分)如圖,已知二次函數(shù)的圖象的頂點(diǎn)為.二次函數(shù)的圖象與軸交于原點(diǎn)及另一點(diǎn),它的頂點(diǎn)在函數(shù)的圖象的對(duì)稱(chēng)軸上.

(1)求點(diǎn)與點(diǎn)的坐標(biāo);
(2)當(dāng)四邊形為菱形時(shí),求函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分10分)如圖是某品牌太陽(yáng)能熱火器的實(shí)物圖和橫斷面示意圖,已知真空集熱管與支架所在直線(xiàn)相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,
(1)求垂直支架的長(zhǎng)度;(結(jié)果保留根號(hào))
(2)求水箱半徑的長(zhǎng)度.(結(jié)果保留三個(gè)有效數(shù)字,參考數(shù)據(jù):
         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分10分)
如圖,四邊形ABCD是長(zhǎng)方形.

(1)作△ABC關(guān)于直線(xiàn)AC對(duì)稱(chēng)的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省泰州市中考數(shù)學(xué)試卷 題型:解答題

(本題滿(mǎn)分10分)如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長(zhǎng)線(xiàn)與BC相交于點(diǎn)N。

(1)點(diǎn)N是線(xiàn)段BC的中點(diǎn)嗎?為什么?

(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案