【題目】如圖,線段 AB4,M AB 的中點(diǎn),動點(diǎn) P 到點(diǎn) M 的距離是 1,連接 PB,線段

PB 繞點(diǎn) P 逆時針旋轉(zhuǎn) 90°得到線段 PC,連接 AC,則線段 AC 長度的最大值是_________

【答案】3

【解析】

以O(shè)為坐標(biāo)原點(diǎn)建立坐標(biāo)系,過點(diǎn)C作CDy軸,垂足為D,過點(diǎn)P作PEDC,垂足為E,延長EP交x軸于點(diǎn)F,設(shè)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)題意動點(diǎn) P 到點(diǎn) M 的距離是 1,在0PF中利用勾股定理得x2+y2=1.然后證明ECP≌△FPB,由全等三角形的性質(zhì)得到EC=PF=y,F(xiàn)B=EP=2-x,從而得到點(diǎn)C(x+y,y+2-x),最后依據(jù)兩點(diǎn)間的距離公式可求得AC=,最后,依據(jù)當(dāng)y=1時,AC有最大值求解即可.

解:如圖所示:過點(diǎn)C作CDy軸,垂足為D,過點(diǎn)P作PEDC,垂足為E,延長EP交x軸于點(diǎn)F.

AB=4,O為AB的中點(diǎn),
A(-2,0),B(2,0).
設(shè)點(diǎn)P的坐標(biāo)為(x,y),則x2+y2=1.
∵∠EPC+BPF=90°,EPC+ECP=90°,
∴∠ECP=FPB.
由旋轉(zhuǎn)的性質(zhì)可知:PC=PB.
ECP和FPB中,

,
∴△ECP≌△FPB.
EC=PF=y,F(xiàn)B=EP=2-x.
C(x+y,y+2-x).
AB=4,O為AB的中點(diǎn),
AC==

x2+y2=1,
AC=

-1≤y≤1,
當(dāng)y=1時,AC有最大值,AC的最大值為=3
故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個由六個邊長為1的正方形組成的圖案,其中點(diǎn)AB的坐標(biāo)分別為(3,5)(6,1).若過原點(diǎn)的直線l將這個圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究相似問題時,甲、乙同學(xué)的觀點(diǎn)如下:

甲:將邊長為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為35的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.

對于兩人的觀點(diǎn),下列說法正確的是( )

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD 中,AEBF 分別平分∠DAB 和∠ABC,交 CD 于點(diǎn) E、F,AE、BF 相交于點(diǎn) M

(1)求證:AEBF;

(2)判斷線段 DF CE 的大小關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. “任意畫一個三角形,其內(nèi)角和為”是隨機(jī)事件;

B. 某種彩票的中獎率是,說明每買100張彩票,一定有1張中獎;

C. “籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件;

D. 投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)一定是50次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,切線DEAC,垂足為點(diǎn)E

求證:(1)ABC是等邊三角形;

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的解題過程,解答后面的問題:

如圖,在平面直角坐標(biāo)系中, , ,為線段的中點(diǎn),求點(diǎn)的坐標(biāo);

解:分別過,軸的平行線,過軸的平行線,兩組平行線的交點(diǎn)如圖所示,設(shè),則,

由圖可知:

線段的中點(diǎn)的坐標(biāo)為

(應(yīng)用新知)

利用你閱讀獲得的新知解答下面的問題:

(1)已知,則線段的中點(diǎn)坐標(biāo)為

(2)平行四邊形中,點(diǎn),的坐標(biāo)分別為,,,利用中點(diǎn)坐標(biāo)公式求點(diǎn)的坐標(biāo)。

(3)如圖,點(diǎn)在函數(shù)的圖象上, ,軸上,在函數(shù)的圖象上 ,以,,四個點(diǎn)為頂點(diǎn),且以為一邊構(gòu)成平行四邊形,直接寫出所有滿足條件的點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,把直線y=x向左平移1個單位可得到一次函數(shù)y=x+1的圖象,把直線y=kx(k≠0)向左平移1個單位可得到一次函數(shù)y=k(x+1)的圖象,把拋物線y=ax2(a≠0)向左平移1個單位,可得到二次函數(shù)y=a(x+1)2的圖象.類似的:我們將函數(shù)y=∣x∣向左平移1個單位,在平面直角坐標(biāo)系中畫出了新函數(shù)的部分圖象,并請回答下列問題:

(1)平移后的函數(shù)解析式是__________;

(2)借助下列表格,用你認(rèn)為最簡單的方法補(bǔ)畫平移后的函數(shù)圖象:

(3)當(dāng)x 時,yx的增大而增大;當(dāng)x 時,yx的增大而減小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A、B分別在反比例函數(shù)x0),x0)的圖象上,且∠AOB=90°,則∠B=30°,則k的取值為( 。

A. B. C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案