【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b﹣<0的解集.(直接寫出答案)

【答案】解:(1)∵B(1,4)在反比例函數(shù)y=上,
∴m=4,
又∵A(n,﹣2)在反比例函數(shù)y=的圖象上,
∴n=﹣2,
又∵A(﹣2,﹣2),B(1,4)是一次函數(shù)y=kx+b的上的點,聯(lián)立方程組解得,
k=2,b=2,
∴y=,y=2x+2;
(2)過點A作AD⊥CD,
∵一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點為A,B,聯(lián)立方程組解得,
A(﹣2,﹣2),B(1,4),C(0,2),
∴AD=2,CO=2,
∴△AOC的面積為:S=ADCO=×2×2=2;
(3)由圖象知:當(dāng)0<x<1和﹣2<x<0時函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,
∴不等式kx+b﹣<0的解集為:0<x<1或x<﹣2.

【解析】(1)由B點在反比例函數(shù)y=上,可求出m,再由A點在函數(shù)圖象上,由待定系數(shù)法求出函數(shù)解析式;
(2)由上問求出的函數(shù)解析式聯(lián)立方程求出A,B,C三點的坐標(biāo),從而求出△AOC的面積;
(3)由圖象觀察函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,對應(yīng)的x的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】程大位所著《算法統(tǒng)宗》是一部中國傳統(tǒng)數(shù)學(xué)重要的著作.在《算法統(tǒng)宗》中記載:“平地秋千未起,踏板離地一尺.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾?”【注釋】1步=5尺.
譯文:“當(dāng)秋千靜止時,秋千上的踏板離地有1尺高,如將秋千的踏板往前推動兩步(10尺)時,踏板就和人一樣高,已知這個人身高是5尺.美麗的姑娘和才子們,每天都來爭蕩秋千,歡聲笑語終日不斷.好奇的能工巧匠,能算出這秋千的繩索長是多少嗎?”
如圖,假設(shè)秋千的繩索長始終保持直線狀態(tài),OA是秋千的靜止?fàn)顟B(tài),A是踏板,CD是地面,點B是推動兩步后踏板的位置,弧AB是踏板移動的軌跡.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.設(shè)繩索長OA=OB=x尺,則可列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,過點B作⊙O的切線DE,F(xiàn)為射線BD上一點,連接CF.
(1)求證:∠CBE=∠A;
(2)若⊙O的直徑為5,BF=2,tanA=2,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB=45°,PQ分別是邊OA,OB上的兩點,O沿PQ折疊,點O落在平面內(nèi)點C.若折疊后PCQB,則∠OPQ的度數(shù)是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,點O為直線AB上一點,過點O作射線OC,使∠AOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖①中的三角板OMN擺放成如圖②所示的位置,使一邊OM在∠BOC的內(nèi)部,當(dāng)OM平分∠BOC時,∠BON=   ;(直接寫出結(jié)果)

(2)在(1)的條件下,作線段NO的延長線OP(如圖③所示),試說明射線OP是∠AOC的平分線;

(3)將圖①中的三角板OMN擺放成如圖④所示的位置,請?zhí)骄俊?/span>NOC與∠AOM之間的數(shù)量關(guān)系.(直接寫出結(jié)果,不須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)30°,得到平行四邊形ABCD′(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點,點D′與點D是對應(yīng)點),點B′恰好落在BC邊上,則∠C的度數(shù)等于( 。

A. 100° B. 105° C. 115° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個等腰直角三角形按圖示方式依次翻折,若DEa,則①DC平分∠BDE;②BC長為1a;③△BCD是等腰三角形;④△CED的周長等于BC的長.則上述命題中正確的序號是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年上半年某市各級各類中小學(xué)(含中等職業(yè)學(xué)校)開展了萬師訪萬家活動.某縣家訪方式有:A.上門走訪;B.電話訪問;C.網(wǎng)絡(luò)訪問(班級微信或QQ群);D.其他.該縣教育局負(fù)責(zé)人從萬師訪萬家平臺上隨機抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計圖.

根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調(diào)查的樣本是________________________________,樣本容量為________,

扇形統(tǒng)計圖中,“A”所對應(yīng)的圓心角的度數(shù)為多少?

(2)請補全條形統(tǒng)計圖.

(3)已知該縣共有3500位老師參與了這次萬師訪萬家活動,請估計該縣共有多少位老師采用的是上門走訪的方式進行家訪的?

查看答案和解析>>

同步練習(xí)冊答案