如圖①,在矩形紙片ABCD中,AB=+1,AD=
(1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長(zhǎng)為   ;
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為   ;
(3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過(guò)頂點(diǎn)B,求弧D′D″的長(zhǎng).(結(jié)果保留π)
(1)
(2)。
(3)∵∠C=90°,BC=,EC=1,∴。∴∠BEC=60°。
由翻折可知:∠DEA=45°,∴∠AEA′=75°=∠D′ED″。

試題分析:(1)先根據(jù)圖形反折變換的性質(zhì)得出AD′,D′E的長(zhǎng),再根據(jù)勾股定理求出AE的長(zhǎng)即可:
∵△ADE反折后與△AD′E重合,∴AD′=AD=D′E=DE=。
。
(2)由(1)知,AD′=,故可得出BD′的長(zhǎng),根據(jù)圖形反折變換的性質(zhì)可得出B′D′的長(zhǎng),再由等腰直角三角形的性質(zhì)得出B′F的長(zhǎng),根據(jù)梯形的面積公式即可得出結(jié)論:
∵由(1)知AD′=,∴BD′=1。
∵將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,∴B′D′=BD′=1。
∵由(1)知AD′=AD=D′E=DE=,∴四邊形ADED′是正方形。
∴B′F=AB′=﹣1。
∴S梯形B′FED′=(B′F+D′E)•B′D′=﹣1+)×1=。
(3)根據(jù)直角三角形的性質(zhì)求出∠BEC的度數(shù),由翻折變換的性質(zhì)可得出∠DEA的度數(shù),故可得出∠AEA′=75°=∠D′ED″,由弧長(zhǎng)公式即可得出結(jié)論!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

校車安全是近幾年社會(huì)關(guān)注的熱點(diǎn)問(wèn)題,安全隱患主要是超速和超載.某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組進(jìn)行了測(cè)試汽車速度的實(shí)驗(yàn),如圖,先在筆直的公路l旁選取一點(diǎn)A,在公路l上確定點(diǎn)B、C,使得AC⊥l,∠BAC=60°,再在AC上確定點(diǎn)D,使得∠BDC=75°,測(cè)得AD=40米,已知本路段對(duì)校車限速是50千米/時(shí),若測(cè)得某校車從B到C勻速行駛用時(shí)10秒,問(wèn)這輛車在本路段是否超速?請(qǐng)說(shuō)明理由(參考數(shù)據(jù):=1.41,=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013年四川綿陽(yáng)3分)如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過(guò)旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30°,若旗桿底總G為BC的中點(diǎn),則矮建筑物的高CD為【   】
A.20米B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川廣安8分)如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長(zhǎng);
(2)求完成這項(xiàng)工程需要土石多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)

(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AC是操場(chǎng)上直立的一個(gè)旗桿,從旗桿上的B點(diǎn)到地面C涂著紅色的油漆,用測(cè)角儀測(cè)得地面上的D點(diǎn)到B點(diǎn)的仰角是∠BDC=45°,到A點(diǎn)的仰角是∠ADC=60°(測(cè)角儀的高度忽
略不計(jì))如果BC=3米,那么旗桿的高度AC=   米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我國(guó)南水北調(diào)中線工程的起點(diǎn)是丹江口水庫(kù),按照工程計(jì)劃,需對(duì)原水庫(kù)大壩進(jìn)行混凝土培厚加高,使壩高由原來(lái)的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為,背水坡坡角∠BAE=680,新壩體的高為DE,背水坡坡角∠DGE=600。求工程完工后背水坡底端水平方向增加的寬度AC. (結(jié)果精確到0.1米,參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案